Motivation 0000000 0000 Motivation II

Iceberg transformation

Rank one flow with Lebesgue spectrum

New examples of mixing local rank one transformations

Alexander Prikhod'ko

Department of Mechanics and Mathematics Moscow State University

Dynamical Systems Meeting, Lower Silesia 2010

On iceberg map and new examples of mixing rank one flows

Moscow State University

э

< ロト < 回 ト < 三 ト < 三 ト

Motivation	Motivation II	lceberg transformation	Rank one flow with Lebesgue spectrum
●000000	000	000000000	
○000	0000	000000	
Rank one mans ar	nd flows		

Outline

Motivation

Rank one maps and flows

Spectral invariants

Motivation II

Littlewood polynomials Generalized Riesz products

Iceberg transformation

Rotated words system lceberg map

Rank one flow with Lebesgue spectrum

Exponential staircase flows Discussion

- E - F

Motivation o●ooooo oooo	Motivation II ০০০ ০০০০	lceberg transformation ooooooooooooooooooooooooooooooooooo	Rank one flow with Lebesgue spectrum
Rank one maps ar	nd flows		

Common settings

Automorpisms

An invertible measure preserving transformation T of the standard Lebesgue space (X, A, μ) is called an *automorphism* of the space X.

An automorphism generates an action of the group \mathbb{Z} .

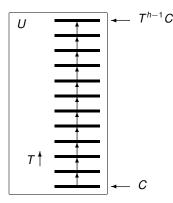
Flows

A flow T^t is an action of the group \mathbb{R} , i.e. a family of automorphisms $T^t: X \to X$ satisfying the group property $T^{t+u} = T^t T^u$.

(人間) (人) (人) (人) (人)

Motivation 000000 0000	Motivation II 000 0000	lceberg transformation	Rank one flow with Lebesgue spectrum

Tower definition of rank one transformation



We associate to a *Rokhlin tower* partition

$$\xi = \{\boldsymbol{C}, \boldsymbol{T}\boldsymbol{C}, \boldsymbol{T}^{2}\boldsymbol{C}, \dots, \boldsymbol{T}^{h-1}\boldsymbol{C}, \boldsymbol{E}\},\$$

 $E = X \smallsetminus U.$

T is said to be a *rank one* map if there exist a sequence of Rokhlin towers U_n such that corresponding partitions ξ_n asymptotically approximate σ -algebra of the phase space.

Tower definition of rank one transformation

Definition. *T* is called a *rank one* transformation if there exist a sequence of Rokhlin towers U_n identified with the corresponding *tower partitions*

$$\xi_n = \{B_n, TB_n, T^2B_n, \ldots, T^{h_n-1}B_n, E_n\}$$

such that $\mu(U_n) \to 1$ and for any measurable set *A* there exist ξ_n -measurable sets A_n such that $\mu(A \bigtriangleup A_n) \to 0$.

Motivation		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	00000000	00000

Symbolic representation

Lemma. We can assume that the *n*-th tower in the definition of a rank one map refines the previous tower.

Definition. Consider a sequence of words W_n such that

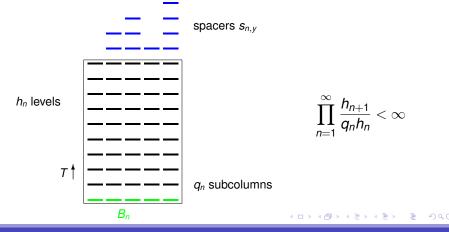
$$W_{n+1} = W_n 1^{s_{n,1}} W_n 1^{s_{n,2}} W_n \dots 1^{s_{n,q_n}} W_n,$$

where symbol 1 is used to create *spacers* between words. It defines a rank one transformation.

(A) (E) (A) (E)

Motivation		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	000000000	00000

Cutting-and-stacking construction



On iceberg map and new examples of mixing rank one flows

Moscow State University

Motivation		Iceberg transformation	Rank one flow with Lebesgue spectrum
000000 0000	000 0000	00000000	00000

Cutting-and-stacking construction: A formal scheme Let $X_n = [0, h_n] \cap \mathbb{Z}$, and for spacers $s_{n,y}$ set

$$\omega_n(y+1) = \omega_n(y) + h_n + s_{n,y}, \qquad 0 \le y < q_n.$$

Define projections $\phi_n \colon X_{n+1} \to X_n$ as follows

•
$$\phi_n(\omega_n(y) + x') = x'$$
 if $x' \in [0, h_n)$,

•
$$\phi_n(t) = h_n$$
 elsewise.

Let *X* be the inverse limit of X_n :

$$X = \{x = (x_1, x_2, \dots, x_n, \dots) : x_{n+1} = \phi_n(x_n), x_n \in X_n\}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Motivation		Iceberg transformation	Rank one flow with Lebesgue spectrum
000000 0000	000 0000	000000000	00000

Cutting-and-stacking construction: A formal scheme Let $X_n = [0, h_n] \cap \mathbb{Z}$, and for spacers $s_{n,y}$ set

$$\omega_n(y+1) = \omega_n(y) + h_n + s_{n,y}, \qquad 0 \le y < q_n.$$

Define projections $\phi_n \colon X_{n+1} \to X_n$ as follows

•
$$\phi_n(\omega_n(y) + x') = x'$$
 if $x' \in [0, h_n)$,

•
$$\phi_n(t) = h_n$$
 elsewise.

Let *X* be the inverse limit of X_n :

$$X = \{x = (x_1, x_2, \dots, x_n, \dots): x_{n+1} = \phi_n(x_n), x_n \in X_n\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation		Iceberg tr
0000000	000	00000
0000	0000	000000

Rank one flow with Lebesgue spectrun

Spectral invariants

Outline

Motivation

Rank one maps and flows Spectral invariants

Motivation II

Littlewood polynomials Generalized Riesz products

Iceberg transformation

Rotated words system Iceberg map

Rank one flow with Lebesgue spectrum

Exponential staircase flows Discussion

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation	Motivation II 000 0000	lceberg transformation	Rank one flow with Lebesgue spectrum

Spectral invariants of an automorphism

The unitary Koopman operator in $L^2(X, \mu)$ associated with a transformation T is

$$\widehat{T}$$
: $L^2(X,\mu) \to L^2(X,\mu)$: $f(X) \to f(TX)$

The spectral invariants of T are the

- maximal spectral type σ on S^1 and the
- multiplicity function $\mathcal{M}(z)$: $S^1 \to \mathbb{N} \sqcup \{\infty\}$.

Usually we study \hat{T} on the space of functions with zero mean.

Motivation		Iceberg transformation	Rank one flow with Lebesgue spectrum
000000 0000	000 0000	00000000	00000

Rank one systems: Spectral multiplicity

Theorem. Rank one transformations and rank one flows are ergodic and have spectral multiplicity 1, i.e. $\mathcal{M}(z) \equiv 1$ (in other words, *simple spectrum*).

A transformation *T* has simple spectrum iff there exists an element $f \in L^2(X, \mu)$ (*cyclic vector*) such that

$$L^2(X,\mu) = \overline{\text{Span}}(\{\widehat{T}^k f \colon k \in \mathbb{Z}\}).$$

In this case $\sigma_f \sim \sigma$, where σ_f is defined by the property

$$\int_{\mathcal{S}^1} z^k \, d\sigma_f = \left\langle T^k f, \, f \right\rangle.$$

- 4 同 ト 4 臣 ト 4 臣 ト

Motivation		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	00000000	00000

Rank one systems: Spectral type

Question. Is the following true: Any rank one transformation has the spectral type which is singular with respect to the Lebesgue measure λ on S^1 ?

$\sigma_f \perp \lambda$

Question (Banach). Does there exist an automorphism with spectral multiplicity 1 and Lebesgue spectral type?

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation		Iceberg transformation	Rank one flow with Lebesgue spectrum
000000 0000	000 0000	000000000 000000	00000 0000

Rank one systems: Spectral type

Question. Is the following true: Any rank one transformation has the spectral type which is singular with respect to the Lebesgue measure λ on S^1 ?

 $\sigma_f \perp \lambda$

Question (Banach). Does there exist an automorphism with spectral multiplicity 1 and Lebesgue spectral type?

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation	Motivation II	Iceberg transformation	Rank one flow with Lebesgue spectru
0000000	000 0000	000000000 000000	00000

Outline

Motivation

Rank one maps and flows Spectral invariants

Motivation II

Littlewood polynomials

Generalized Riesz products

Iceberg transformation

Rotated words system Iceberg map

Rank one flow with Lebesgue spectrum

Exponential staircase flows Discussion

- E - F

	Motivation II	Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	000000000	00000

Littlewood polynomials

Polynomials with Littlewood type coefficient constraints

$$\mathcal{K}_n = \Big\{ \mathcal{P}(z) = \frac{1}{\sqrt{n+1}} \sum_{k=0}^n a_k z^k \colon |a_k| \equiv 1 \Big\}.$$

$$\mathcal{L}_n = \Big\{ P(z) = \frac{1}{\sqrt{n+1}} \sum_{k=0}^n a_k z^k : a_k \in \{-1, 1\} \Big\}.$$

$$\mathcal{M}_n = \left\{ P(z) = \frac{1}{\sqrt{n}} (z^{\omega_1} + z^{\omega_2} + \ldots + z^{\omega_n}) \colon \omega_j \in \mathbb{Z}, \ \omega_j < \omega_{j+1} \right\}.$$

	Motivation II	Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000	00000000	00000

Littlewood polynomials

Polynomials with Littlewood type coefficient constraints

$$\mathcal{K}_n = \Big\{ \mathcal{P}(z) = \frac{1}{\sqrt{n+1}} \sum_{k=0}^n a_k z^k \colon |a_k| \equiv 1 \Big\}.$$

$$\mathcal{L}_n = \Big\{ P(z) = \frac{1}{\sqrt{n+1}} \sum_{k=0}^n a_k z^k : a_k \in \{-1, 1\} \Big\}.$$

$$\mathcal{M}_n = \left\{ P(z) = \frac{1}{\sqrt{n}} (z^{\omega_1} + z^{\omega_2} + \ldots + z^{\omega_n}) \colon \omega_j \in \mathbb{Z}, \ \omega_j < \omega_{j+1} \right\}.$$

	Motivation II	Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000	00000000	00000

Littlewood polynomials

Polynomials with Littlewood type coefficient constraints

$$\mathcal{K}_n = \Big\{ \mathcal{P}(z) = \frac{1}{\sqrt{n+1}} \sum_{k=0}^n a_k z^k \colon |a_k| \equiv 1 \Big\}.$$

$$\mathcal{L}_n = \Big\{ P(z) = \frac{1}{\sqrt{n+1}} \sum_{k=0}^n a_k z^k : a_k \in \{-1, 1\} \Big\}.$$

$$\mathcal{M}_n = \left\{ \boldsymbol{P}(\boldsymbol{z}) = \frac{1}{\sqrt{n}} (\boldsymbol{z}^{\omega_1} + \boldsymbol{z}^{\omega_2} + \ldots + \boldsymbol{z}^{\omega_n}) \colon \omega_j \in \mathbb{Z}, \ \omega_j < \omega_{j+1} \right\}.$$

Moscow State University

(3)

Motivation ooooooo oooo	Motivation II ○○● ○○○○	Iceberg transformation ooooooooooooooooooooooooooooooooooo	Rank one flow with Lebesgue spectrum
Littlewood polynon	nials		

Flatness phenomenon

Question (Littlewood, 1966). Is the following true? For any $\varepsilon > 0$ there exists a polynomial with unimodular coefficients $P(z) \in \mathcal{K}_n$ such that

$$\forall z \in S^1$$
 $||P(z)| - 1| < \varepsilon.$

Theorem (Kahane, 1980). The answer is "yes" with the speed of convergence

$$\varepsilon_n = O(n^{-1/17}\sqrt{\ln n}).$$

Question (open). Can we see flatness in \mathcal{L}_n or \mathcal{M}_n ?

(4月) トイヨト イヨト

Motivation ooooooo oooo	Motivation II ○○● ○○○○	Iceberg transformation ooooooooooooooooooooooooooooooooooo	Rank one flow with Lebesgue spectrum
Littlewood polynon	nials		

Flatness phenomenon

Question (Littlewood, 1966). Is the following true? For any $\varepsilon > 0$ there exists a polynomial with unimodular coefficients $P(z) \in \mathcal{K}_n$ such that

$$\forall z \in S^1$$
 $||P(z)| - 1| < \varepsilon.$

Theorem (Kahane, 1980). The answer is "yes" with the speed of convergence

$$\varepsilon_n = O(n^{-1/17}\sqrt{\ln n}).$$

Question (open). Can we see flatness in \mathcal{L}_n or \mathcal{M}_n ?

・ 同 ト ・ 三 ト ・ 三 ト

Motivation	Motivation II	lceberg transformation	Rank one flow with Lebesgue spectrum	
০০০০০০০	○○○	000000000		
০০০০	●○○○	000000		
Generalized Riesz products				

Outline

Motivation

Rank one maps and flows Spectral invariants

Motivation II

Littlewood polynomials Generalized Riesz products

Iceberg transformation

Rotated words system Iceberg map

Rank one flow with Lebesgue spectrum

Exponential staircase flows Discussion

4 E b

Motivation 0000000 0000	Motivation II ○○○ ○●○○	Iceberg transformation ooooooooooooooooooooooooooooooooooo	Rank one flow with Lebesgue spectrum		
Generalized Riesz products					

Generalized Riesz products

If a function $f \in L^2(X, \mu)$ is constant on the levels of *n*-th tower then we identify *f* with a function $f_{(n)}$: $\mathbb{Z} \to \mathbb{C}$. Define polynomials

$$P_n(z) = rac{1}{\sqrt{q_n}} \sum_{y=0}^{q_n-1} z^{\omega_n(y)} \in \mathcal{M}_n.$$

The spectral measure σ_f is given (up to a constant multiplier) by the infinite product

$$\sigma_f = |\widehat{f}_{(n_0)}|^2 \prod_{n=n_0}^{\infty} |P_n(z)|^2.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

	Motivation II	Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	000000000 000000	00000 0000

Generalized Riesz products

Applications to rank one systems

Theorem (Bourgain, 1993). Ornstein rank one transformations have singular spectral type.

Theorem (Klemes, 1994). A class of staircase constructions is of singular spectral type.

On iceberg map and new examples of mixing rank one flows

Moscow State University

(< 2)</p>

Motivation 0000000 0000	Motivation II ○○○ ○○●○	lceberg transformation ooooooooooooooooooooooooooooooooooo	Rank one flow with Lebesgue spectrum	
Generalized Riesz products				

Applications to rank one systems

Theorem (Bourgain, 1993). Ornstein rank one transformations have singular spectral type.

Theorem (Klemes, 1994). A class of staircase constructions is of singular spectral type.

(E)

Motivation	Motivation II	lceberg transformation	Rank one flow with Lebesgue spectrum	
ooooooo	○○○	000000000		
oooo	○○○●	000000		
Generalized Riesz products				

Finite multiplicity

Question. Does there exist an automorphism with *finite spectral multiplicity* and *absolutely continuous spectral type*?

Theorem (Guenais, 1998). The positive answer to the Littlewood question in \mathcal{L}_n in equivalent to the fact that a class of Morse cocycles has a Lebesgue component in spectrum.

Theorem (Downarowicz, Lacroix, 1998). If all continuous binary Morse systems have singular spectra then the merit factors of binary words are bounded (the Turyn's conjecture holds).

Theorem (Kwiatkowski, 1981) A uniquely ergodic binary Morse system has simple spectrum.

A (1) > A (2) > A

Motivation	Motivation II	lceberg transformation	Rank one flow with Lebesgue spectrum		
0000000	○○○	000000000			
0000	○○○●	000000			
Generalized Risez products					

Finite multiplicity

Question. Does there exist an automorphism with *finite spectral multiplicity* and *absolutely continuous spectral type*?

Theorem (Guenais, 1998). The positive answer to the Littlewood question in \mathcal{L}_n in equivalent to the fact that a class of Morse cocycles has a Lebesgue component in spectrum.

Theorem (Downarowicz, Lacroix, 1998). If all continuous binary Morse systems have singular spectra then the merit factors of binary words are bounded (the Turyn's conjecture holds).

Theorem (Kwiatkowski, 1981) A uniquely ergodic binary Morse system has simple spectrum.

Motivation 0000000 0000	Motivation II	lceberg transformation 000000000 000000	Rank one flow with Lebesgue spectrum	
Generalized Rises products				

Finite multiplicity

Question. Does there exist an automorphism with *finite spectral multiplicity* and *absolutely continuous spectral type*?

Theorem (Guenais, 1998). The positive answer to the Littlewood question in \mathcal{L}_n in equivalent to the fact that a class of Morse cocycles has a Lebesgue component in spectrum.

Theorem (Downarowicz, Lacroix, 1998). If all continuous binary Morse systems have singular spectra then the merit factors of binary words are bounded (the Turyn's conjecture holds).

Theorem (Kwiatkowski, 1981) A uniquely ergodic binary Morse system has simple spectrum.

A (10) A (10) A (10)

Motivation 0000000

Rotated words system

Outline

Motivation

Rank one maps and flows Spectral invariants

Motivation II

Littlewood polynomials Generalized Riesz products

Iceberg transformation

Rotated words system

Iceberg map

Rank one flow with Lebesgue spectrum Exponential staircase flows Discussion

(4) (3) (4) (4) (4)

Motivation	Iceberg transformation	
0000000	00000000	
0000		

Rank one flow with Lebesgue spect

Rotated words system

Rotated words system. Away from rank one

Let ρ_a be the operator that rotates a word by *a* positions:

$$W = W_1 W_2 \stackrel{\rho_a}{\mapsto} W_2 W_1$$
 if $|W_1| = a$.

For example, $\rho_1(CAT) = ATC$, $\rho_2(CAT) = TCA$.

Observation: ρ_a is a discrete IET.

イロト イポト イヨト イヨト

Motivation		Iceberg transformation	
0000000	000	00000000	00000
0000	0000	000000	0000

Rank one flow with Lebesgue spectrum

Rotated words system. Away from rank one

Let ρ_a be the operator that rotates a word by *a* positions:

$$W = W_1 W_2 \stackrel{\rho_a}{\mapsto} W_2 W_1$$
 if $|W_1| = a$.

For example, $\rho_1(CAT) = ATC$, $\rho_2(CAT) = TCA$.

Observation: ρ_a is a discrete IET.

ロト イポト イラト イラト

Motivation 0000000 0000	Motivation II	lceberg transformation ○○●○○○○○○ ○○○○○○	Rank one flow with Lebesgue spectrum

Rotated words system

For a given word

$$W_n = abc \dots z$$

consider all its' rotations:

$$\rho_0(W_n) = abc \dots yz$$

$$\rho_1(W_n) = bcd \dots za$$

$$\rho_2(W_n) = cde \dots ab$$

$$\dots$$

$$\rho_{h_n-1}(W_n) = zab \dots xy.$$

э

(A) (E) (A) (E) (A)

Motivation 0000000 0000	Motivation II 000 0000	lceberg transformation ○○○○○○○○○○	Rank one flow with Lebesgue spectrum

Rotated words system

Definition. Fix a sequence q_n and a sequence $(a_{n,y})$, where $a_{n,y} \in \{0, 1, \ldots, h_n - 1\}, y = 0, 1, \ldots, q_n$.

Let us define a sequence of words W_n which is constructed iteratively:

$$W_{n+1} = \rho_{a_{n,0}}(W_n)\rho_{a_{n,2}}(W_n)\dots\rho_{a_{n,q_n-1}}(W_n).$$

On iceberg map and new examples of mixing rank one flows

ロトス得とスラトスラト

Motivation	Motivation II 000 0000	lceberg transformation 0000●00000 000000	Rank one flow with Lebesgue spectrum

Common examples

Morse sequences. The sequence 0110100110010110... is a rotated words system given by $h_n = 2^n$, $q_n = 2$ and $\rho_{n,0} = 0$, $\rho_{n,1} = \frac{1}{2}h_n$.

Three letter Morse sequences. $abc \mapsto abc.bca.cab$

On iceberg map and new examples of mixing rank one flows

Moscow State University

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation 0000000 0000	Motivation II	lceberg transformation 0000●00000 000000	Rank one flow with Lebesgue spectrum

Common examples

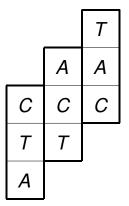
Morse sequences. The sequence 0110100110010110... is a rotated words system given by $h_n = 2^n$, $q_n = 2$ and $\rho_{n,0} = 0$, $\rho_{n,1} = \frac{1}{2}h_n$.

Three letter Morse sequences. $abc \mapsto abc.bca.cab$

・ 同 ト ・ ヨ ト ・ ヨ ト

	Iceberg transformation	Rank one flow with Lebesgue spe
	000000000	

Illustration to the dynamic: CAT H CAT.ATC.TCA.TCA.CAT.ATC



On iceberg map and new examples of mixing rank one flows

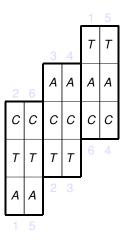
Moscow State University

э

프 노 세 프

		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	000000000000000000000000000000000000000	00000

Illustration to the dynamic: CAT CAT.ATC.TCA.TCA.CAT.ATC



On iceberg map and new examples of mixing rank one flows

Moscow State University

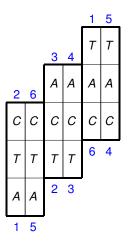
A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 노 세 프

э

		Iceberg transformation	Rank one flow with Lebesgue spectrum
000000 0000	000 0000	000000000	00000

Illustration to the dynamic: CAT CAT.ATC.TCA.TCA.CAT.ATC



On iceberg map and new examples of mixing rank one flows

Moscow State University

-

A D b 4 A b

э

Motivation	Motivation II 000 0000	lceberg transformation 000000●00 000000	Rank one flow with Lebesgue spectrum

Addic representation

Given q_n set $h_{n+1} = q_n h_n$ and $X_n = \{0, \dots, h_{n+1} - 1\}$, and consider maps $\phi_n \colon X_{n+1} \to X_n$:

$$\phi_n(yh_n + x') = \rho_{a_{n,y}}(x'), \qquad 0 \leq x' < h_n.$$

Define X to be the inverse limit of:

$$X_1 \stackrel{\phi_1}{\leftarrow} X_2 \stackrel{\phi_2}{\leftarrow} X_3 \stackrel{\phi_3}{\leftarrow} \dots,$$
$$X = \{x = (x_1, x_2, \dots) \colon x_n \in X_n, \phi_n(x_{n+1}) = x_n\}$$

On iceberg map and new examples of mixing rank one flows

Moscow State University

э

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Motivation II 000 0000	lceberg transformation oooooooooo oooooo	Rank one flow with Lebesgue spectrum
		000 000000000

Addic representation

Define $Tx = (..., x_n + 1, x_{n+1} + 1, ...)$.

Almost surely $x_n + 1$ is correct starting from some n_0 . Let other x_n be defined to meet the rule $\phi_n(x_{n+1}) = x_n$.

Lemma. *T* is a measure preserving transformation.

Motivation 0000000 0000	Motivation II	lceberg transformation ○○○○○○●○ ○○○○○○	Rank one flow with Lebesgue spectrum

Addic representation

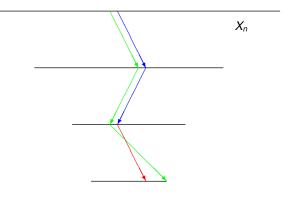
Define
$$Tx = (..., x_n + 1, x_{n+1} + 1, ...).$$

Almost surely $x_n + 1$ is correct starting from some n_0 . Let other x_n be defined to meet the rule $\phi_n(x_{n+1}) = x_n$.

Lemma. *T* is a measure preserving transformation.

Motivation	Motivation II	lceberg transformation	Rank one flow with Lebesgue spectrum
0000000	000	00000000●	
0000	0000	000000	

Addic representation Bratteli–Vershik diagram



T maps a path $x = (x_1, x_2, \ldots)$ to the next path $(\ldots, x_n + 1, \ldots)$.

Motivation

Iceberg map

Outline

Motivation

Rank one maps and flows Spectral invariants

Motivation II

Littlewood polynomials Generalized Riesz products

Iceberg transformation

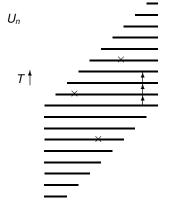
Rotated words system Iceberg map

Rank one flow with Lebesgue spectrum Exponential staircase flows Discussion

		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000	000	000000000	00000
0000	0000	000000	0000

Iceberg map

Iceberg (by a plot)



Vertical fibers correspond to different rotations of the word.

Point at the top of the iceberg is mapped into a set in the bottom.

A small ε_n -fraction of points do not satisfy lifting rule.

Iceberg partition ξ_{n+1} into levels refines ξ_n .

・ 同下 ・ ヨト ・ ヨ

 Motivation
 Motivation II
 Iceberg transformation
 Ra

 00000000
 000
 000000000
 00

 0000
 000
 000
 00

Iceberg map

Spectral properties of iceberg maps

Theorem. Let *T* be an iceberg transformation given by uniforme i.i.d. randomized rotations $a_{n,k}$. There exist a sequence q_n such that the following properties hold a.s.

- (i) T has 1/4-local rank
- (ii) T has simple spectrum
- (iii) $\sigma * \sigma \ll \lambda$

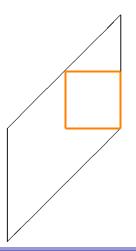
(iv) If *f* is a ξ_n -measurable function, $\int f d\mu = 0$, then $\forall \varepsilon > 0$

$$\langle T^t f, f \rangle = O(t^{-1/2+\varepsilon})$$

Motivation	Motivation II	Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000	000	○○○○○○○○○	
0000	0000	○○○●○○	

Iceberg map

$\frac{1}{4}$ Local rank one



We can fit a rectangle with the maximal area $\frac{1}{4}\mu(X)$ (asymptotically).

On iceberg map and new examples of mixing rank one flows

Moscow State University

★ E > ★ E >

< 🗇 🕨

		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	00000000 000000	00000 0000

Iceberg map

Estimating spectral multiplicity

Lemma (*Katok, Stepin*). Let *U* be a unitary operator on a separable Hilbert space *H*, and let σ and N(z) are the spectral measure and the multiplicity function of *U*.

If $N(x) \ge m$ on a set of positive σ -measure then there exist m orthogonal vectors f_1, \ldots, f_m such that for any cyclic space $Z \subseteq H$ and any $g_1, \ldots, g_m \in Z$, $||g_i|| \equiv a$, the following is true

$$\sum_{i=1}^{m} \|f_i - g_i\|^2 \ge m(1 + a^2 - 2a/\sqrt{m})$$

- 4 同 ト 4 臣 ト 4 臣 ト

Motivation	Motivation II	lceberg transformation	Rank one flow with Lebesgue spectrum
0000000	000	○○○○○○○○	
0000	0000	○○○○○●	
Iceberg map			

- Does iceberg have rank one or not? Finite rank?
- Does iceberg have MSJ?
- Is it true that iceberg is mixing of all orders?
- Let σ be the spectral type of the iceberg map. Is it true that σ has an absolutely continuous component?
- Is it true that σ is Lebesgue?

wouvau	
00000	20

Outline

Motivation

Rank one maps and flows Spectral invariants

Motivation II

Littlewood polynomials Generalized Riesz products

Iceberg transformation

Rotated words system lceberg map

Rank one flow with Lebesgue spectrum Exponential staircase flows Discussion

A 3 1 A 3 1

< 🗇 🕨

		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000	000	000000000	0000
0000	0000		0000

Flat trigonometric sums with coefficients in $\{0, 1\}$

$$\mathcal{M}_q^{\mathbb{R}} = \left\{ \mathcal{P}(t) = \frac{1}{\sqrt{q}} \sum_{y=0}^{q-1} \exp(2\pi i t \omega(y)) : \omega(y) \in \mathbb{R} \right\}.$$

Theorem. For any 0 < a < b and $\delta > 0$ there exists a sum $\mathcal{P}(t) \in \mathcal{M}_q$ which is δ -flat in $L^1(a, b)$ (and $L^2(a, b)$), i.e.

$$\left\|\left|\mathcal{P}(t)\right|_{(a,b)}\right|-1\right\|_1<\delta.$$

On iceberg map and new examples of mixing rank one flows

(4 回) (4 回) (4 回)

		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000	000	000000000	0000
0000	0000		0000

Flat trigonometric sums with coefficients in $\{0, 1\}$

$$\mathcal{M}_q^{\mathbb{R}} = \left\{ \mathcal{P}(t) = \frac{1}{\sqrt{q}} \sum_{y=0}^{q-1} \exp(2\pi i t \omega(y)) : \omega(y) \in \mathbb{R} \right\}.$$

Theorem. For any 0 < a < b and $\delta > 0$ there exists a sum $\mathcal{P}(t) \in \mathcal{M}_q$ which is δ -flat in $L^1(a, b)$ (and $L^2(a, b)$), i.e.

$$\left\|\left|\mathcal{P}(t)\right|_{(a,b)}\right|-1\right\|_1<\delta.$$

On iceberg map and new examples of mixing rank one flows

< 同 > < 回 > < 回 >

		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000	000	00000000	00000
0000	0000		0000

Flat trigonometric sums with coefficients in $\{0, 1\}$

$$\omega(\mathbf{y}) = \frac{\mathbf{q}}{\varepsilon^2} \mathbf{e}^{\varepsilon \mathbf{y}/\mathbf{q}}$$

$\varepsilon^{-1} \in \mathbb{N}$

The concept: $|\mathcal{P}(t)| \approx 1$ with λ -probabiity close to 1 if

$$t o \infty, \quad \varepsilon \to \infty, \quad q = q_j \to \infty.$$

Remark. Whenever we fix an interval (t_0, t_1) for t, the degree q goes to infinity along a rare subsequence q_i .

イロト イポト イヨト イヨト

		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	000000000	

Flat trigonometric sums with coefficients in $\{0, 1\}$

$$\omega(\mathbf{y}) = rac{\mathbf{q}}{\varepsilon^2} \mathbf{e}^{\varepsilon \mathbf{y}/\mathbf{q}}$$

 $\varepsilon^{-1} \in \mathbb{N}$

The concept: $|\mathcal{P}(t)| \approx 1$ with λ -probability close to 1 if

$$t \to \infty$$
, $\varepsilon \to \infty$, $q = q_j \to \infty$.

Remark. Whenever we fix an interval (t_0, t_1) for t, the degree q goes to infinity along a rare subsequence q_i .

ロトス得とくほとくほど

		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	000000000	

Flat trigonometric sums with coefficients in $\{0, 1\}$

$$\omega(\mathbf{y}) = rac{\mathbf{q}}{\varepsilon^2} \mathbf{e}^{\varepsilon \mathbf{y}/\mathbf{q}}$$

$$\varepsilon^{-1} \in \mathbb{N}$$

The concept: $|\mathcal{P}(t)| \approx 1$ with λ -probability close to 1 if

$$t \to \infty$$
, $\varepsilon \to \infty$, $q = q_j \to \infty$.

Remark. Whenever we fix an interval (t_0, t_1) for *t*, the degree *q* goes to infinity along a rare subsequence q_i .

ロット (雪) (ヨ) (ヨ)

		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	00000000	00000 0000

Exponential staircase flow

We construct a rank one flow with the following parameters:

q_n is the number of subcolumns

• spacers
$$s_{n,y} = \omega_n(y+1) - \omega_n(y) - h_n$$

•
$$\omega_n(\mathbf{y}) = \mu_n \frac{q_n}{\varepsilon_n^2} e^{\varepsilon_n \mathbf{y}/q_n}, \qquad h_n = \frac{\mu_n}{\varepsilon_n}$$

$$\mu_n \rightarrow \infty$$
 (slowest), $\varepsilon_n \rightarrow 0$, $q_n \rightarrow \infty$ (fastest).

Theorem. With certain choice of parameters μ_n , ε_n and q_n the rank one flow given by the exponential staircase construction has Lebesgue spectral type.

		Iceberg transformation	Rank one flow with Lebesgue spectrum
0000000 0000	000 0000	00000000	00000 0000

Exponential staircase flow

We construct a rank one flow with the following parameters:

q_n is the number of subcolumns

• spacers
$$s_{n,y} = \omega_n(y+1) - \omega_n(y) - h_n$$

•
$$\omega_n(y) = \mu_n \frac{q_n}{\varepsilon_n^2} e^{\varepsilon_n y/q_n}, \qquad h_n = \frac{\mu_n}{\varepsilon_n}$$

 $\mu_n \rightarrow \infty$ (slowest), $\varepsilon_n \rightarrow 0$, $q_n \rightarrow \infty$ (fastest).

Theorem. With certain choice of parameters μ_n , ε_n and q_n the rank one flow given by the exponential staircase construction has Lebesgue spectral type.

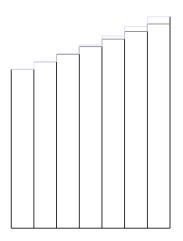
Motivation I

Iceberg transformation

Rank one flow with Lebesgue spectrum

Exponential staircase flows

Exponential staircase flow



Roof function $r(y) = \omega'(y)$ approximates a staircase roof function.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

436436

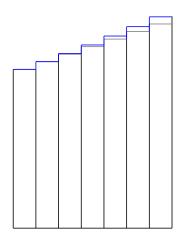
Motivation I

Iceberg transformation

Rank one flow with Lebesgue spectrum

Exponential staircase flows

Exponential staircase flow



Roof function $r(y) = \omega'(y)$ approximates a staircase roof function.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

436436

Motivation	Motivation II	lceberg transformation	Rank one flow with Lebesgue spectru
0000000	000	000000000	○○○○○
0000	0000	000000	●○○○

Outline

Motivation

Rank one maps and flows Spectral invariants

Motivation II

Littlewood polynomials Generalized Riesz products

Iceberg transformation

Rotated words system Iceberg map

Rank one flow with Lebesgue spectrum

Exponential staircase flows Discussion

- E - F

Jm

Motivation	Motivation II	lceberg transformation	Rank one flow with Lebesgue spectrum
0000000		000000000	○○○○○
0000		000000	○●○○

Discussion

Iceberg for \mathbb{Z}^2 -actions

Observation. Let *T* and *S* are the generators of \mathbb{Z}^2 -iceberg action $(T^i S^j)$.

- Both T and S have countable Lebesgue spectrum and zero entropy
- The spectral type σ of the action satisfies: $\sigma * \sigma \ll \lambda_2$ and $\pi_X \sigma \ll \lambda, \pi_Y \sigma \ll \lambda$.

Motivation	Motivation II	lceberg transformation	Rank one flow with Lebesgue spectrum
0000000	000	000000000	○○○○○
0000	0000	000000	○○●○

Discussion

Iceberg approximation

Definition. *T* is said to have *m*-fold iceberg rank is the σ -algebra is approximated by a sequence of iceberge tuple $(\mathcal{I}_n^{(1)}, \ldots, \mathcal{I}_n^{(m)})$.

Moscow State University

э

Motivation	Motivation II	lceberg transformation	Rank one flow with Lebesgue spectrum
০০০০০০০	000		○○○○○
০০০০	0000		○○○●
Discussion			

Group actions Iceberg

- Iceberg is extended to general group actions (in the same cases as rank one: Z^d, ℝ^d, nilpotent group actions, (C, F)-construction)
- Rotated words approach can be combined with rank one
- In place of rotation we can consider any IET

Exponential staircase flows

- At this point, the effect is observed for dimension one
- Staircase flows can be extented directly to *p*-adic field actions
- ► There exist rank one ℝ^d-actions with Lebesgue spectral type

Motivation ০০০০০০০ ০০০০	Motivation II 000 0000	lceberg transformation ooooooooooooooooooooooooooooooooooo	Rank one flow with Lebesgue spectrum ○○○○○ ○○○●
Discussion			

Group actions Iceberg

- Iceberg is extended to general group actions (in the same cases as rank one: Z^d, ℝ^d, nilpotent group actions, (C, F)-construction)
- Rotated words approach can be combined with rank one
- In place of rotation we can consider any IET

Exponential staircase flows

- At this point, the effect is observed for dimension one
- Staircase flows can be extented directly to *p*-adic field actions
- There exist rank one R^d-actions with Lebesgue spectral type