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Littlewood-type polynomials: Flatness phenomenon

Polynomials with Littlewood-type
coefficient constraints

Definition. A complex polynomial

P(z) =
1√

n + 1

n∑
k=0

akzk ∈ C[z]

is called unimodular if |ak | ≡ 1.

Definition. A polynomial P(z) is called ε-ultraflat if

∀z ∈ S1 ∣∣|P(z)| − 1
∣∣ < ε.
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Littlewood-type polynomials: Flatness phenomenon

Polynomials with Littlewood-type
coefficient constraints

Gn =
{

P(z) = 1√
n+1

n∑
k=0

akzk : |ak | ≡ 1
}
.

Ln =
{

P(z) = 1√
n+1

n∑
k=0

akzk : ak ∈ {−1, 1}
}
⊂ Gn.

Mn =
{

P(z) = 1√
n
(zω1 + zω2 + . . .+ zωn ) : ωj ∈ Z, ωj < ωj+1

}
.
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Littlewood-type polynomials: Flatness phenomenon

Littlewood’s flatness problem

Question (Littlewood, 1966). Is the following true?
For any ε > 0 there exists an ε-ultraflat polynomial P(z) ∈ Gn,
n ≥ 1.

Theorem (Kahane, 1980). The answer is "yes" with the speed
of convergence

εn = O(n−1/17
√

ln n).

Question (open ).
Is it possible to find an ultraflat polynomial in Ln?
Is it possible to find an Lp-flat polynomial inMn?

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Littlewood-type polynomials: Flatness phenomenon

Littlewood’s flatness problem

Question (Littlewood, 1966). Is the following true?
For any ε > 0 there exists an ε-ultraflat polynomial P(z) ∈ Gn,
n ≥ 1.

Theorem (Kahane, 1980). The answer is "yes" with the speed
of convergence

εn = O(n−1/17
√

ln n).

Question (open ).
Is it possible to find an ultraflat polynomial in Ln?
Is it possible to find an Lp-flat polynomial inMn?

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Littlewood-type polynomials: Flatness phenomenon

Littlewood’s flatness problem

Question (Littlewood, 1966). Is the following true?
For any ε > 0 there exists an ε-ultraflat polynomial P(z) ∈ Gn,
n ≥ 1.

Theorem (Kahane, 1980). The answer is "yes" with the speed
of convergence

εn = O(n−1/17
√

ln n).

Question (open ).
Is it possible to find an ultraflat polynomial in Ln?
Is it possible to find an Lp-flat polynomial inMn?

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Littlewood-type polynomials: Flatness phenomenon

Littlewood’s flatness problem

Question (Littlewood, 1966). Is the following true?
For any ε > 0 there exists an ε-ultraflat polynomial P(z) ∈ Gn,
n ≥ 1.

Theorem (Kahane, 1980). The answer is "yes" with the speed
of convergence

εn = O(n−1/17
√

ln n).

Question (open ).
Is it possible to find an ultraflat polynomial in Ln?
Is it possible to find an Lp-flat polynomial inMn?

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Littlewood-type polynomials: Flatness phenomenon

Estimating Littlewood-type polynomials
Littlewood’s famous conjecture: For any f ∈Mn

‖
√

n · f‖1 ≥ c log n.

This was proved by Konyagin (1980).

Littlewood noticed (1968): “Although it is known that

gn(θ) =
n∑

m=0

eim log meimθ

satisfies |gn(θ) < c
√

n + 1| on R, the existence of polynomials
Pn ∈ Ln with |Pn| ≤ c is shown recenty ”.
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Littlewood-type polynomials: Flatness phenomenon

Rudin–Shapiro polynomials
The Rudin–Shapiro sequence of polynomials Pn,Qn ∈ Lµ̄n

is defined reccurently as follows

P0(z) = Q0(z) = 1

Pn+1(z) = Pn(z) + z2n
Qn(z),

Qn+1(z) = Pn(z)− z2n
Qn(z),

|Pn(z)|2 + |Qn(z)|2 = 2(µ̄n + 1),

where
µ̄n = deg Pn = deg Qn = 2n − 1.

Theorem. There exist polynomials in Lµ̄n such that |Pn(z)| ≤ c.
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Littlewood-type polynomials: Flatness phenomenon

Erdös conjecture

And the following Littlewood’s question still has no answer.

Question (open ).
Is it possible to find polynomials in Ln modulus also at least c?
c1 ≤ |Pn(z)| ≤ c2.

Erdös conjectured that there exists an absolute constant c∗ > 1
such that max |P(z)| ≥ c∗ for all P ∈ Ln.
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Littlewood-type polynomials: Flatness phenomenon

Behavior in average

Theorem (Salem–Zigmund, 1954).
For all but o(#Ln) polynomials Pn from Ln

c1 log n ≤ max
|z|=1

|Pn(z)| ≤ c2 log n.

Theorem (Newmann–Byrnes, 1990). The expected L4-norm

E‖
√

n · Pn‖4 = (2n2 − n)1/4

for polynomials Pn ∈ Ln.
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Littlewood-type polynomials: Flatness phenomenon

Number of zeros at 1

Theorem (Amoroso, Bombieri–Vaaler, Hua, Erdélyi).
There is an absolute c > 0 such that every polynomial

P(z) =
n∑

j=0

ajz j , |aj | ≤ 1, aj ∈ C,

has at most
c(n(1− log |a0|))1/2

zeros at 1.
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Littlewood-type polynomials: Flatness phenomenon

Bernstein inequalities
We say that a polynomial P(z) is ε-flat in Lp(S1) if∥∥ |P(z)| − 1

∥∥
p < ε.

Theorem (Queffelec, Saffari, Nazarov).
For any p ∈ (0,+∞], p 6= 2,

lim
n→∞

βp(Gn) = lim
n→∞

βp(Ln)→ 1,

where

βp(C) = sup
P∈C

1
deg P

·
‖P ′‖p
‖P‖p
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Littlewood-type polynomials: Flatness phenomenon

Bernstein inequalities and phase behavior

Theorem (Queffelec, Saffari).
For εn = K1n−1/96 there exist an εn-ultraflat Pn ∈ Gn such that

‖P ′‖p
n‖P‖p

= γp + Oη(εn),

where 0 < η ≤ p ≤ ∞, and Pn can be choosen so that

Pn(eit ) = |Pn(eit )|eiαn(t),

α′n(t)
n

=
t

2π
+

1
2

+ Ot (n−1/96).
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Littlewood-type polynomials: Flatness phenomenon

Uniform distribution of the angular speed

The following theorem was conjectured by Saffari (1992).

Theorem (Erdélyi, ∼ 2005). Let (Pn) be an ultraflat sequence
of polynomials in Gn. Then the distribution of the normalized
angular speed α′n(t)/n converges to the uniform distribution as
n→∞,

λ{t ∈ [0,2π] : 0 ≤ α′n(t) ≤ nx} = 2πx + εn(x),

where εn(x)→ 0 uniformely on [0,1].
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Littlewood-type polynomials: Flatness phenomenon

Uniform distribution of the angular speed

Theorem: reformulaton (Erdélyi). Let Pn be an ultraflat
sequence of unimodular polynomials, then

1
2π

∫ 2π

0
|α′n(t)|q dt =

nq

q + 1
+ on,qnq.

Theorem. At the same time, the higher derivatives α(r)
n

are small,
max

0≤t≤2π
|α(r)

n | ≤ εn,r nr , r ≥ 2,

where εn,r → 0 as n→∞.
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Dynamical flatness problem

Flatness on a lattice

Example: Let e(t) = e2πi t and
define polynomials

P(m)(z) =
1√
n

n−1∑
j=0

e
(

mj2

n

)
z j ,

where (m,n) = 1 and n is prime. Then

|P(m)(z)| = 1 if zn = 1.

C

rr
r

r rrr r
rrr r
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Dynamical flatness problem

Connection between Gn andMn

Consider a polynomial

P(z) =
n−1∑
j=0

zhj+sj ∈Mn, sj � h,

and for z = e2πi t write

zhj+sj = zsj zhj = a(t)
j w j ,

where
w = zh = e2πi ht , a(t)

j = e2πi t ·sj .
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Dynamical flatness problem

Dynamical Littlewood’s flatness problem
We have constructed a family of polynomials Q(t) ∈ Gn−1,

Q(t)(w) =
1√
n

n−1∑
j=0

a(t)
j w j .

Question. Is it possible to find a family of polynomials
Q(t) ∈ Gn−1 simultaneously flat accoring to Lp-norm, or
ultraflat?

Observation. Flatness of Q(t) implies flatness of the
underlying P ∈Mn.

Question. Is it possible to distinguish flatness of P ∈Mn and
the corresponding Q(t) ∈ Gn−1 ?
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Dynamical flatness problem

Dynamical Littlewood’s flatness problem

Simple case: Is it possible to find simultaneously flat
(or ultraflat?) polynomials:

Q(z) =
n∑

j=0

ajz j , and Q(2)(z) =
n∑

j=0

a2
j z j ?

Question. Is it possible to ensure ε-flatness for all but ε-part of
polynomials in the sequence

Q(z), Q(2)(z), . . . , Q(h)(z) ?

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Dynamical flatness problem

Dynamical Littlewood’s flatness problem

Simple case: Is it possible to find simultaneously flat
(or ultraflat?) polynomials:

Q(z) =
n∑

j=0

ajz j , and Q(2)(z) =
n∑

j=0

a2
j z j ?

Question. Is it possible to ensure ε-flatness for all but ε-part of
polynomials in the sequence

Q(z), Q(2)(z), . . . , Q(h)(z) ?

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Let T be an invertible measure preserving transformation of the
standard Lebesgue space (X ,A, µ), X = [0,1].
The Koopman operator

T̂ : L2(X , µ)→ L2(X , µ) : f (x) 7→ f (Tx)

Spectral invariants of T are the
I maximal spectral type σ on S1 = {z ∈ C : |z| = 1} and the
I multiplicity functionM(z) : S1 → N t {∞}.

Usually we study T̂ on the space of functions with zero mean.

On Littlewood-type polynomials and applications to spectral theory Moscow State University
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Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Examples:
I Bernoulli maps: σ = λ and the multiplicity =∞
I Transformation with pure point spectrum: spectrum is

simple, and σ is a distribution on a discrete subgroup in S1

(example: irrational rotation)

Problem (Banach). Is the following true?
There exists a measure preserving transformation T with
simple spectrum and σ = λ?

On Littlewood-type polynomials and applications to spectral theory Moscow State University
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Spectral theory of dynamical systems

Banach and Kirillov problems

Banach question: reformulation
(closer to the original version).

Is the following true? There exists a measure preserving
transformation T and an element ξ ∈ L2(X , µ) such that
T̂ jξ ⊥ T̂ kξ and {T̂ jξ} generate the entire L2(X , µ).

Question (Kirillov, 1967). Given an Abelian group G is it
possible to find a G-action with simple Lebesgue spectrum?
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Spectral theory of dynamical systems

Finite spectral multiplicity

Theorem (Guenais, 1998). Connection between
Littlewood-type problem in Ln (coefficients ±1) and the spectral
properties of Morse cocycles.

Theorem (Downarowicz, Lacroix, 1998).
If all continuous binary Morse systems have singular spectra
then the merit factors of binary words are bounded
(the Turyn’s conjecture holds).
Given a word A in alphabet {−1,+1}, the merit factor of A

MA =
1

‖PA‖44 − 1
, PA(z) =

1√
n

n−1∑
j=0

A(j)z j .
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Dynamical systems of rank one and Riesz products

Rank one transformations

Definition. T is called a rank one transformation if there exist a
sequence of partitions

ξn = {Bn,TBn,T 2Bn, . . . ,T hn−1Bn,En},

identified with Rokhlin towers, such that µ(
⋃hn−1

j=0 T jBn)→ 1
and for any measurabe set A there exist ξn-measurable sets An
with µ(A4 An)→ 0.
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Dynamical systems of rank one and Riesz products

Rank one transformations: Symbolic definition

Any rank one transformation can be described in the following
way using the language of symbolic dynamics.

Starting from a word Wn0 consider the sequence of words Wn
given by

Wn+1 = Wn1sn,0Wn1sn,1Wn1sn,2 . . .Wn1sn,qn−1 ,

where symbol “1” is used to create spacers between words,
and parameters sn,1 are fixed in advance.
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Dynamical systems of rank one and Riesz products

Generalized Riesz products

Let us define polynomials

Pn(z) =
1
√

qn

qn−1∑
y=0

zωn(y),

where
ωn(y) = yhn + sn,0 + . . .+ sn,y−1.

If Pn(z) are generated by some rank one map, then
P1(z) · · ·Pn(z) always belongs toMNn .

On Littlewood-type polynomials and applications to spectral theory Moscow State University
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Dynamical systems of rank one and Riesz products

Generalized Riesz products

The spectral measure σf of a function f ∈ L2(X , µ)
constant on the levels of a tower with index n0 is given
(up to a constant multiplier) by the infinite product

σf = |̂f(n0)|2
∞∏

n=n0

|Pn(z)|2,

converging in the weak topology.

Question. Is it possible to construct flat polynomials Pn(z)
compatible with some rank one dynamical system?

On Littlewood-type polynomials and applications to spectral theory Moscow State University
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Dynamical systems of rank one and Riesz products

Results on singularity

Theorem (Bourgain, 1993). Ornstein rank one transformations
have singular spectral type.

Theorem (Klemes, 1994). A class of “staircase” rank one map
given by quadratic frequency function ωn(j) = jhn + j(j − 1)/2
is of singular spectral type.

Question. All rank one transformations are of singular
spectral type?
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Dynamical systems of rank one and Riesz products

Rank one flows
Definition. A flow with invariant measure is a family of
measure preserving transformations T t , where t ∈ R, such that
T t+s = T tT s.

Rank one flows generate a kind of Riesz products

|̂f0(t)|2 ·
∞∏

n=1

|Pn(t)|2

with exponential sums as muptipliers

Pn(t) =
1
√

qn
(e2πi tω(0) + e2πi tω(1) + . . .+ e2πi tω(qn−1)).
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Exponential staircase sums

Flat exponential sums with coefficients in {0,1}

MR
q =

P(t) = 1√
q

q−1∑
y=0

e2πi tω(y) : ω(y) ∈ R

 .

Theorem. The answer is "yes" in the classMR
q .

For any 0 < a < b and ε > 0 there exists a sum P(t) ∈Mq
which is compact ε-flat both in L1(a,b) and L2(a,b),∥∥∥|P(t)

∣∣∣
(a,b)
| − 1

∥∥∥
1
< ε,
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Exponential staircase sums

Flat exponential sums with coefficients in {0,1}

and the sums P(t) are given by the formula

P(t) =
1
√

q

q−1∑
y=0

e2πi tω(y),

where
ω(y) = m

q
β2 eβy/q,

with appropriate choice of m > 0, β−1 ∈ N and q ranging over a
set Qε,a,b(β, ε,m) of positive density in Z.
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Exponential staircase sums

Exponential staircase flow

We construct a rank one flow with the following parameters:
I qn is the number of subcolumns
I spacers sn,y = ωn(y + 1)− ωn(y)− hn

I ωn(y) = µn
qn

β2
n

e βny/qn , hn =
µn

βn

µn →∞ (slowest), βn → 0, qn →∞ (fastest).

Theorem. With certain choice of parameters µn, βn and qn the
rank one flow given by the exponential staircase construction
has Lebesgue spectral type.
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Exponential staircase sums

Exponential sums: Van der Corput’s method

Lemma. If k →∞,∫ b

a
eikx2

dx =

√
π

k
exp

(
2πi
8

)
+ O

(
1
k

)
.

For real a, c 6= 0 and b > 0∫ b

0
eit(a+cx2) dx = A0

eiat

2(|c|t)1/2 −
i

2bct
eit(a+cb2) + O

(
1

b3(ct)2

)
,

where A0 = e2πisgn(c)/8√π.
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Exponential staircase sums

Exponential sums: Van der Corput’s method

Let us consider a sum over a interval in the integer line

S =
b∑

y=a

e2πi f (y),

where f ∈ C2([a,b]).

Example:

f (y) =
y2

2(b − a)
+ γy + f0.
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Exponential staircase sums

Exponential sums: Van der Corput’s method

Van der Corput’s method – The concept.
We can estimate S as follows:

S =
∑

a<k<β

1√
|f ′′(yk )|

e2πi(f (yk )−kyk +1/8) + E ,

where yk are solutions of the equation

f ′(yk ) = k , where k ∈ Z,

and α = f ′(a), β = f ′(b).

Points yk are called stationary phases for the function f (y).
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Exponential staircase sums

Stationary phase dynamics

Our sum P(t) generates a family of stationary phases yk (t)
depending on t ,

P(t) =
1
√

q

q−1∑
y=0

e2πi tω(y),

given by the equation

tω′(yk (t)) = k ,

and the law of evolution for yk (t) in some cases is expressed by
a dynamical system ẏ = v(t , y).
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Exponential staircase sums

Free quantum particle on a compact space

Remark that the sum P(t) is connected to a quantum
dynamical system given on T by equation

i
∂

∂t
ψ = Hψ,

where

H = ω

(
−i

∂

∂x

)
,

and P = ψ̂.
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Exponential staircase sums

Stationary phase dynamics: Example

Quadratic function ω(y) = H0(y) = y2

2q generates yk (t) as
follows:

t · H ′0(yk ) = k , t · yk

q
= k , yk (t) =

kq
t
,

and the dynamical system induced by H0 acts on R as follows:

Rt : x 7→ x
t
, yk (t) = Rtyk (0).

Notice that R is an action of the multiplicative group R+.
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Exponential staircase sums

Stationary phase dynamics: Idea

Ways of constructing flat P(t):
I Searching for special unstable cases of arithmetic nature.

Example: 2mH0(y) = my2/q, 2m ∈ 2Z and q is prime.
I Controlling the dynamics of stationary phases yk (t).

Idea:
(a) The set {tω(yk )} is generally chaotic (e.g. for H0).

Could it be constant for some special choice of ω(y) ?
or

(b) Is it possible to control the distances:
yk+1(t)− yk (t) = const ?
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Exponential staircase sums

Stationary phase dynamics: Calculation

Let us suppose that d
dt (tω(yk )) = 0, then

ω(yk ) + tω′(yk )ẏk = 0.

Now differentiating the equation tω′(yk ) = k we get

ω′(yk ) + tω′′(yk )ẏk = 0,

therefore
∂

∂y
ω′

ω
= 0,

ω′

ω
= βq−1 = const,

and ω(y) = ω0eβy/q.
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Exponential staircase sums

Stationary phase dynamics for exponential ω(y)

Observe that ω(y) has expansion (with small parameter β )

ω(y) =
q
β2 +

y
β

+
y2

2q
+ β

y3

6q2 + . . .

Let us associate an R+-action to our ω(y). Solving equation

t · ω′(y) = k = const

we have
t · 1
β

eβy/q = k , yk (t) =
q
β

log
βk
t
,
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Exponential staircase sums

Stationary phase dynamics for exponential ω(y)

y(t) = y(0) +
q
β

log t−1,

and the dynamical system St : y(0) 7→ y(t),

St : x 7→ x +
q
β

log t−1

acts by translations of the line R.

Dynamical system observation: St is much less “chaotic”
than Rt .

I R2 acts on 1-periodic functions as hyperbolic map
I and St acts on the same space as rigid rotaion
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Exponential staircase sums

Illustration to the dynamics

Dynamics of Rt

r r r r
r r r r r r r r
r r r r r r r r r r r r r r r r
r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r
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Exponential staircase sums

Exponential staircase flow generated by ω(y) = q
βeβy/q

“. . . though careful examination had shown
that the height of the steps steadily decreased
with the rising gravity. The stair had apparently
been designed so that the effort required
to climb it was more or less constant at every
point in its long curving sweep. . . ”

Arthur C. Clarke, Rendezvous with Rama
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Outline of the proof

Outline of the proof: Calculation of yk(t)

We see that
yk (t) =

q
β

log
βk
t
,

where the index k ∈ Z ranges over the interval (K0(t),K1(t)),

K0(t) =
t
β
, K1(t) =

t
β

eβ,

K1(t)− K0(t) ∼ t , β → 0, t →∞.
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Outline of the proof

Outline of the proof: Van der Corput’s method
Applying van der Corput approach we have for t →∞

P(t) =
1√
t

∑
K0(t)<k<K1(t)

e2πi(tω(yk )−kyk +1/8) + E1(t).

Let us calculate the resulting phase function (minus 1/8)

tω(yk )− kyk ≡ −kyk (mod 1),

since
tω(yk ) =

q
β
· tω′(yk ) =

q
β
· k ∈ Z,

if we require that β−1 ∈ Z.
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Outline of the proof

Applying van der Corput’s method twice
Continuing calculation of the phase function we have

−kyk = −k · q
β

log
βk
t

= x(t)k − q · Ω(k),

where
x(t) =

q
β

log
t
β

do not depend on k , and

Ω(k) =
1
β

k log k

do not depend on t .
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Outline of the proof

Applying van der Corput’s method twice

Theorem (Poincaré reccurence theorem). Given ε > 0 for a
sequence of q of positive density

−q · Ω(k) ≈ε Ω(k),

for the fixed finite set of k ∈ (K0,K1) ∩ Z.

Here we apply the reccurence theorem to the torus shift on T[t]

T : v 7→ v + Ω.
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Outline of the proof

Applying van der Corput’s method twice

It can be easily seen that

Ω′(K1(t))− Ω′(K0(t)) = 1 + o(1),

as β → 0 and t →∞, hence, applying again van der Corput
estimate we have

P(t) ≈ 1√
t

∑
K0(t)<k<K1(t)

e2πi (−kyk +1/8) = e2πi A(t) + E2(t),

where E2(t) is Lp-small error term for p = 1 and p = 2.

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Outline of the proof

Scheme of the approach

Exponential sum with coeffitients {0, 1}
→

Van der Corput’s method (1), reduction: degree q to degree t

→
Quantum free particle on T

→
Dynamical system: R+-action induced by the Hamiltonian ω(y)

→

Dynamical system on T[t] given by a torus shift

→
Van der Corput’s method (2), reduction: degree t to degree 1
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Outline of the proof

Thank you!

On Littlewood-type polynomials and applications to spectral theory Moscow State University


	Littlewood-type polynomials ans sums
	Littlewood-type polynomials: Flatness phenomenon
	Dynamical flatness problem

	Applications to dynamical systems
	Spectral theory of dynamical systems
	Dynamical systems of rank one and Riesz products

	Flat exponential sums with coefficients in {0,1}
	Exponential staircase sums
	Outline of the proof


