
SPECTRAL THEORY FOR DYNAMICAL SYSTEMS ARISING FROMSUBSTITUTIONSANNE SIEGELAbstract. Symbolic dynamical systems were �rst introduced to better understand the dynamicsof geometric maps; particularly to study dynamical systems for which past and future are disjointas for instance toral automorphisms or Pseudo-Anosov di�eomorphisms of surfaces. Self-similarsystems are de�ned to be topologically conjugate to their own �rst return map on a given subset.A basic idea is that, as soon as self-similarity appears, a substitution is hidden behind the originaldynamical system. In this lecture, we �rst illustrate this idea with concrete examples, and then,try to understand when symbolic codings provide a good representation. A natural queston �nallyarises: which substitutive dynamical systems are isomorphic to a rotation on a compact group?Partial answers have been given by many authors since the early 60's. Then, we will see how aspectral analysis problem �nally reduces to a combinatorial problem, whose partial answers implyEuclidean geometry and even some arithmetics.
1. What is a substitution ?Let A be a �nite alphabet and A� the set of �nite words on A. The empty word is denoted ".1.1. Substitution on �nite words. A substitution or iterated morphism is a combinatorial objectthat simply replaces letters inA by nonempty �nite words. An example on the three-letters alphabetA = f1; 2; 3g is given by � de�ned by 1 7! 12, 2 7! 3, 3 7! 1.As dynamicians, our aim is to iterate this substitution. Hence we formally de�ne a substitutionas an endomorphism of the free monoid A� endowed with the concatenation (de�ned by �(uv) =�(u)�(v)), such that the image of each letter of A is nonempty, and such that for at least one letter,say a, the length of the successive iterations �n(a) tends to the in�nity (these two conditions ensurethat the substitution can be iterated in�nitely).Then, the successive iterations of the example � previously de�ned applied on the letter 1 give112123123112311212311212312311212312311231121231231123112123112123123112311212311212312311212312311231121231123231231121231231One should notice that for all n, each word �n(1) starts with the preceeding one �n(1). Roughly,it is natural to call the in�nite iteration of these words a �xed point of �. However, such a �xedpoint appears to be an in�nite word de�ned as a limit, so that we need to introduce now a coupleof formal de�nitions about in�nite sequences and topology.1



2 ANNE SIEGEL1.2. Extension of a substitution to in�nite words. A (�nite or in�nite) word on A is denotedw = w0w1 : : : . The metrizable topology of the set of in�nite words AN is the product topologyof the discrete topology on each copy of A. A cylinder of AN is a closed-open set of the form:[W ] = f(wi)i 2 AN jw0 : : : wjW j�1 =Wg for W 2 A�.A substitution naturally extends by concatenation to the set of in�nite words AN :�(w0w1 : : : ) = �(w0)�(w1) : : :A periodic point of a substitution � is an in�nite word u = (ui)i2N 2 AN that satis�es ��(u) = ufor some � > 0. If �(u) = u, then u is a �xed point of �. A simple combinatorial proof states thata substitution may not always have a �xed point, but it always admits at least one periodic point[Que87].1.3. What is symbolic dynamics? A specialist in dynamical systems always looks for mapsacting on objects. Dealing with in�nite sequences, a natural map immediatly appears, that is, thedeletion of the �rst letter of the word. Formally, we denote by S the shift map on AN de�ned byS( (wi)i2N ) = (wi+1)i2N .Symbolic dynamics consists in studying the shift map on a closed set of in�nite sequences ofAN , which is supposed to be invariant through the action of the shift map. We are particularlyinterested in symbolic sets that are minimal, that is, that do not contain a strictly smaller closedinvariant subset.1.4. Symbolic dynamical system associated with a substitution. Dealing with a substitu-tion, a natural process to associate with it a symbolic dynamical consists in �rst building a �xedpoint (or a periodic point if a �xed point does not exist) by iteration, then shifting this in�niteword in�nitely many often (then one gets the orbit of the sequence through the shift point), and�nally considering the closure of this orbit. However, this process should be interesting providedthat when further periodic points do exist, they generate the same symbolic system.Formally, the symbolic dynamical system generated by a word u is the pair (Xu; S), where Xudenotes the closure in AN of the orbit fSnu; n 2 Ng of u under the shift map. The shift map S isan homeomorphism on this compact subset of AN .We call a substitution � primitive if there exists an integer � (independent of the letters) suchthat, for each pair (a; b) 2 A2, the word ��(a) contains at least one occurrence of the letter b.Theorem 1.1 (see [Que87, PF02]). Let � be a primitive substitution. If u is a periodic point for �,then Xu does not depend on u and we denote by (X�; S) the symbolic dynamical system generatedby �. The system (X� ; S) is minimal and uniquely ergodic: X� contains no non-empty closedshift-invariant subset and there exists a unique shift-invariant probability measure �X� on X�.Notice that the property of minimality has a combinatorial interpretation in this case: (X�; S) isminimal if and only if any every word occurring in a periodic point u appears in an in�nite numberof positions with bounded gaps.2. From geometric dynamics to symbolic dynamicsHistorically, symbolic dynamics has been introduced to better understand the dynamics of geo-metric maps. Indeed, by coding the orbits of a dynamical system with respect to a cleverly chosen�nite partition indexed by the alphabet A, one can replace the initial dynamical system, whichmay be di�cult to understand, by a simpler dynamical system, that is, the shift map on a subsetof AN.This old idea was used intensively, up to these days, particularly to study dynamical systems forwhich past and future are disjoint, such as toral automorphisms or pseudo-Anosov di�eomorphismsof surfaces. These systems with no memory, whose entropy is strictly positive, are coded by



SPECTRAL THEORY FOR DYNAMICAL SYSTEMS ARISING FROM SUBSTITUTIONS 3subshifts of �nite type, de�ned by a �nite number of forbidden words, and belong to the Markovframework. Some very important literature has been devoted to their many properties (see [LM95]).The partitions which provide a good description for a topological dynamical system, leading to asubshift of �nite type, are called Markov partitions.2.1. An example of the use of symbolic dynamics: The Morse sequence. In 1920, M.Morse was studying geodesics, that is, the curves realizing the minimum distance between twopoints, on connected surfaces with constant negative curvature. He was looking at in�nite geodesicswhich remain within a small part of the space. More precisely, a geodesics is said to be recurrentif every point of the geodesics lies at a given distance (whatever small it can be) of a point inevery long enought segment of the geodesics. Hence, closed geodesics are recurrent or periodic. Anintricate question is the existence of non-closed recurrent geodesics.
Figure 1. Two examples of connected surfaces with constant negative curvature.To answer this question, in [Mor21], using a method initiated by Hadamard, Morse did a codingof geodesics, by in�nite sequences of 0's and 1's, according to which boundary of the surface theymeet: thus, we arrive in the space f0; 1gN of in�nite symbolic sequences. To advance along ageodesic translates into looking at the next element of the sequence. The coding sends undersuitable conditions the topology of the surface onto the product topology in f0; 1gN .Properties of geodesics are then easy to check: a closed geodesic corresponds to a periodicsequence. In the same way, by replacing points by elementary segments, the reader shall be able tocheck that a recurrent geodesic corresponds to what is now called a minimal sequence: every wordoccurring in u appears an in�nite number of positions with bounded gaps.Thanks to this coding, Morse proved the existence of a closed and recurrent geodesics:Theorem 2.1 ([Mor21]). A minimal and nonperiodic sequence is given by the (Prouhet-Thue)-Morse sequence,01101001100101101001011001101001100101100110100101101001100101101:::de�ned as the �xed point (starting with 0) of the Morse substitution � : 0 7! 01 1 7! 10.A full study of the Morse sequence is made in [PF02].2.2. Self-similar dynamics and substitutions. Dealing with a dynamical system, a usual prob-lem is to try to understand the local structure of its orbits. A classical method to study this problemis to consider the �rst return map (Poincar�e map) over an appropriate neighborhood N of a givenpoint. For some systems such as toral quadratic rotations or some interval exchanges with param-eters living in a quadratic extension, the system de�ned by the �rst return map on some subsetis topologically conjugated to the original system. One can say that the original dynamical sys-tem has a self-similar structure. A basic idea is that, in general, as soon as self-similarity occurs,a substitution is hidden behind the original dynamical system: the trajectories of points in theneighborhood N before they come back into N , de�ne a substitution. Then, the trajectories of thepoints of the full system belong to the symbolic dynamical system associated with the substitution.Let us immediatly illustrate this idea with a simple example.



4 ANNE SIEGEL2.3. Example: addition of the golden ratio. Let ' denote the addition of the golden ratio� = 1� �2 = 1; 61::: on the one-dimensional torus T:' : x 2 T = RnZ 7! x+ � mod 1 2 T:This map has two intervals of continuity:
T = I2 [ I1; with I2 = [0; 1 � �[; I1 = [1� �; 1[:Let  denote the �rst return map of ' on the largest interval of continuity I1, that is,8x 2 [1� �; 1[;  (x) = 'minfk2N� ; '(x)2[1��;1[g(x):We are going to prove thanks to a short computation that  is equal to ' itself, up to a reversalof the orientation and a renormalization.Indeed, Let us consider the following partition of I1:I1 = J1 [ J2; with J1 = [1� �; 2 � 2�[; J2 = [2� 2�; 1[:Then a simple computation yields that  restricted to J1 is equal to '2:� J1 = [1� �; 2� 2�[� I1,� '(J1) = [0; 1 � �[6� I1,� '2(J1) = [�; 1[� I1.Similarly, since J2 = [2� 2�; 1[� I1 and '(J1) = [1� �; �[� I1,  restricted to J2 is equal to '.A graphical representation of ' and  is given in Figure 2: the two graphics appear to be equalup to a reversal of the orientation and a renormalization. Formally, there is no di�culty to provethat ' and  are homeomorphic through the conjugacy map � : x 2 [0; 1[7! (1��)x+1 2 [1��; 1[.

Representation of ' First return map  on [1� �; 1[Figure 2. The addition of the golden ratio is equal to its �rst return map up to areversal of the orientation and a renormalization.The interest of such a coding is that we are now able to code the trajectories of a point in[1 � �; 1[ for both the addition ' of the golden ratio and its �rst return map  . Let us study theexample shown in Fig. 3. Indeed, the point � mod 1 (denoted by 0 on each �gure) belongs to thelargest interval I1. Then one sees that '(�) (denoted by 1) belongs to I2, '2(�) 2 I1, etc. Thenthe trajectory of � is coded by I1I2I1I1I2I1I2I1.Similarly, computing the trajectory of � for the �rst return map  gives J1J2J1J1J2.The main point is that, since  is de�ned as the �rst return map of ', there is a relationshipbetween the two codings introduced here. Indeed, as soon as a point x lies in J1, then we knowthat� x belongs to I1,� '(x) 2 I2�  (x) = '2(x).



SPECTRAL THEORY FOR DYNAMICAL SYSTEMS ARISING FROM SUBSTITUTIONS 5

Trajectory through ':I1I2I1I1I2I1I2I1. Trajectory through  :J1J2J1J1J2Figure 3. Trajectories of the point � relatively to intervals of continuity of ' andits �rst return map  Hence, coding a point x by J1 according to  implies that the trajectory of the same point willbe coded by I1I2 according to '. Similarly, coding a point x by J2 according to  implies that thetrajectory of the same point will be coded by I1 according to '. We thus deduce that the trajectoryof a point x through ' can be obtained by mapping the trajectory of a point x through  thanksto the map: J1 ! I1I2; J2 ! I1:One should remember now that we stated that ' and  were conjugate through the map � .However, � is a �xed point for � , and the partition J1[J2 is the image of I1[ I2 through � . Hence,the trajectories of � have the same coding through ' and  . Consequently, this coding must benothing else than the �xed point of the following substitution, called the Fibonacci substitution1 7! 12; 2 7! 1:One �nally proves that the addition of the golden ratio is very well represented as a symbolicshift map:Theorem 2.2 (see a general proof in [AFH99]). The coding of the trajectory of � mod 1 throughthe addition ' by the golden ratio � on T according to the intervals of continuity I1 and I2 is the�xed point of the Fibonacci substitution 1! 12, 2! 1:u = 121121211211212112121121121211211212112121121121211212112112121:::The set of codings of all the points of T is equal the symbolic dynamical system associated withthe Fibonacci substitution. The coding map is a semi-topological conjugacy between the shift mapon the symbolic system and the addition by the golden ratio.Remark 2.3. For the example of the toral addition by the golden ratio, we can de�ne an inversemap, from the symbolic system onto the torus. It is proved that this map is continuous, 2-to-1,and 1-to-1 except on a countable set; this is the best possible result, given the fact that one of thesets is connected and the other one a Cantor set.3. From symbolic dynamics to geometry ?As shown in Section 2.3, Poicar�e's method de�nes a coding map from the geometric systemonto the substitutive symbolic dynamical system. A natural question is: how far is this map frombeing a bijection? We have just seen that a precise answer has been given to this question for the



6 ANNE SIEGELFibonacci substitution (Remark 2.3). For other examples, the question can be much more di�cult.It is natural then to focus on the reverse question: given a substitution, which self-similar geometricactions are coded by this substitution?For the Morse substitution, it is proved that the symbolic dynamical system associated withthis substitution is a two-point extension of the dyadic odometer, that is, the group Z2 of 2-adicintegers ([dJ77] and also [PF02], chapter 2).The three-letter equivalent of the Fibonacci substitution is the Tribonacci substitution 1 7!12, 2 7! 13, 3 7! 1. G. Rauzy, with methods from number theory, proved in 1981 that thesymbolic dynamical system associated with this substitution is measure-theoretically isomorphic,by a continuous map, to a domain exchange on a self-similar compact subset of R2 called theRauzy fractal [Rau82]. Tiling properties of the Rauzy fractal yield an isomorphism between thesubstitutive system and a translation on the two-dimensional torus. This example will be studiedin more details in Section 3.2.These examples emphasize the connection between searching for a geometric interpretation of asymbolic dynamical systems and understanding whether this dynamical system is already knownup to an isomorphism. Since substitutive dynamical systems are deterministic, i.e., of zero entropy,they are very di�erent from subshifts of �nite type. Hence, the following question is natural:which substitutive dynamical systems are isomorphic to a translation on a compact group? Moregenerally, what is their maximal equicontinuous factor, that is, the largest translation on a compactgroup that topologically embeds into this symbolic system?Let us introduce now the point of view of spectral theory. Indeed, to a dynamical system (X;S)is associated the unitary operator U : f 2 L2(X�; S) 7! f � S 2 L2(X�; S) [Wal82]. One usualcalls eigenvalues of the dynamical system the eigenvalues �'s of U ; their modulus is equal to one,so that the word eigenvalue sometimes also holds for every x 2 [0; 1[ such that � = e2i�x. Theeigenfunctions of the dynamical system are the eigenfunctions of U ; they appear to be functionsf 2 L2(X�; S).From this point of view, the maximum equicontinuous factor of a dynamical system is provedto be the unique abelian compact group translation with the same eigenvalues than the dynamicalsystem. Hence, it uniquely determined by the eigenvalues [Wal82].Starting from a geometrical and combinatorial question, we naturally come to a question ofspectral theory, that is, computing the eigenvalues of a dynamical system.3.1. Substitution of constant length. During the seventies, a precise answer to this questionhas been obtained for substitutions of constant length (the images of each letters in the alphabetshare the same length) [Kam70, Mar71, Dek78]. This caracterization implies some p-adic groups
Zp, also called p-adic odometer, obtained as the completion of Z for the p-adic topology [Gou97].Theorem 3.1 (Dekking [Dek78]). Let � be a substitution of constant length n. Let u = (un)n2Nbe a periodic point for �. We call height of the substitution the greatest integer m which is coprimewith n and divides all the strictly positive ranks of occurrence of the letter u0 in u. The height isless that the cardinality of the alphabet.The maximal equicontinuous factor of the substitutive dynamical system associated with � is theaddition of (1; 1) on the abelian group Zn � Z=mZ, where Zn denotes the product of the p-adicgroups Zp for every prime p that divides n.As an example, the letter 1 appears at rank 3 and 5 in the �xed pointu = 122121122112122121121:::of the Morse substitution so that this sustitution has height 1. Hence, the maximal equicontinuousfactor of the associated substitutive system is the 2-adic group Z2.



SPECTRAL THEORY FOR DYNAMICAL SYSTEMS ARISING FROM SUBSTITUTIONS 7An example of a substitution with an height di�erent from 1 is given by 1 7! 121 2 7! 312 3 7!213: the letter 1 appears at every even rank in the �xed pointu = 121312121213121312121312so that the height is 2 and the maximal equicontinuous factor is Z3 � Z=2Z.Dekking also provides a necessary and su�cient condition for a measure-theoretic isomorphismbetween such a substitutive system of constant length and its maximal equicontinuous factor. Thiscondition is purely combinatorial: a substitution � is said to satisfy the coincidence condition ifthere exists n such that the image of each letter under a power �k has the same n-th letter. Wehave:Theorem 3.2 (Dekking [Dek78]). Let � be a substitution of constant length and of height 1. Thesubstitutive dynamical system associated with � has a purely discrete spectrum if and only if thesubstitution � satis�es the condition of coincidence.As an example, the substitution 1 7! 12 2 7! 23 3 7! 13 has a pure discrete spectrumdynamical system since its three �xed points contain a 1 at rank 6:122323123131213231312131:::231312131223121312232313:::122323132313121312232313:::Conversely, the two �xed points of the Morse substitution have no coincidence so that theassociated dynamical system is not isomorphic to the dyadic odometer.In the case when the height of the substitution is di�erent from 1, it is possible to recodethe substitution into a substitution with height 1 and to check the coincidence condition on thislast substitution. As an example of application, this allows one to prove that the substitution1 7! 121 2 7! 312 3 7! 213 introduced previously has a pure discrete spectrum dynamicalsystem (see [Dek78] and [PF02], Chap. 7 for details).3.2. A �rst step towards the study of substitution of nonconstant length: The Tribon-nacci substitution. G. Rauzy generalized in [Rau82] the dynamical properties of the Fibonaccisubstitution to a three-letter alphabet substitution, called the Tribonacci substitution or Rauzysubstitution, and de�ned by �(1) = 12 �(2) = 13 �(3) = 1:Broken line associated with the substitution { Let u = denote the unique in�nite �xed point of �:u = 12131211213121213121121312131211213121213121:::Let us embed this in�nite word u as a broken line in R3 by replacing succesively each letter of uby the corresponding vector in the canonical basis (e1, e2, e3) in R3.



8 ANNE SIEGELAn interesting property of this broken line is that it remains at a bounded distance of a line,turning around it. One states that this axis if nothing else that the expanding direction of theincidence matrix of the substitution, that is, the matrix that contains in each column j the numberof occurences of each letter i in �(j). M� = 0@ 1 1 11 0 00 1 0 1A :Notice that the reason why � is called the Tribonacci substitution is that the characteristicpolynomial of M� is X3 � X2 � X � 1 so that its roots satisfy �3 = �2 + � + 1, and are calledTribonacci numbers in reference to the Fibonacci number. One root is strictly greater than 1 andis associated with an expanding eigenline; the two other roots are complex conjugates of modulusless than 1. They generate a contracting plane.De�nition of the Rauzy fractal {When one projects the vertices of the broken line onto the contract-ing plane ofM�, along the expanding direction, then one obtains a bounded set in a two-dimensionalvector space. The closure of this set of points is a compact set denoted by R and called the Rauzyfractal (see Fig. 4).To be more precise, denote by � the linear projection in R3, parallel to the expanding directionof M�, on the contracting plane of M�, identi�ed with the complex plane C. If u = (ui)i2Z is theperiodic point of the substitution, then the Rauzy fractal isR = (� nXi=0 eui! ; n 2 Z

):

Figure 4. The projection method to get the Rauzy fractal for the Tribonnacci substitution.Partition of the Rauzy fractal { As shown in Fig.4, three subsets of the Rauzy fractal can bedistinguished. Indeed, for each letter j = 1; 2; 3, the cylinder Rj is de�ned to be the closure of theset of ends of any segment on the broken line which is parallel to the canonical vector ej :Rj = (� nXi=0 eui! ; n 2 Z; un+1 = j):The union of these three cylinders covers the compact R, and G. Rauzy proved in [Rau82] thattheir intersection has zero measure.Dynamics on the Rauzy fractal { One should notice that it is possible to move on the broken line,from a vertex to the following one, thanks to a translation by one of the three canonical vectors e1,



SPECTRAL THEORY FOR DYNAMICAL SYSTEMS ARISING FROM SUBSTITUTIONS 9e2 or e3. In the contracting plane, this means that each cylinder Ri can be translated by a givenvector, i.e., �(ei), without going out of the Rauzy fractal: Ri + �(ei) � R:Thus, the following map ', called a domain exchange (see Fig. 5) is well de�ned for any pointof the Rauzy fractal which belongs to only one set Rj. Since the cylinders intersect on a set ofmeasure zero, this map is de�ned almost everywhere on the Rauzy fractal:8x 2 R; '(x) = x+ �(ei); if x 2 Ri:
Figure 5. Domain exchange over the Rauzy fractal.It is natural to code, up to the partition de�ned by the 3 cylinders, the action of the domainexchange ' over the Rauzy fractal R. G. Rauzy proved in [Rau82] that the coding map, from Rinto the three-letter alphabet full shift f1; 2; 3gZ is almost everywhere one-to-one. Moreover, thiscoding map is onto the substitutive system associated with the Tribonacci substitution. Thus wehave the following result:Theorem 3.3 (Rauzy, [Rau82]). The domain exchange ' de�ned on the Rauzy fractal R is semi-topologically conjugate to the shift map on the symbolic dynamical system associated with the Tri-bonacci substitution.Factorization onto a torus { The domain exchange ' is de�ned only almost everywhere, whichprevents us to de�ne a continuous dynamics on the Rauzy fractal. A solution to this problemconsists in factorizing the Rauzy fractal by the lattice L = Z�(e1�e3)+Z�(e2�e3). Indeed, thisquotient map sends the contracting plane onto a two-dimensional torus; the three vectors �(e1),�(e2) and �(e3) map onto the same vector on the torus. Thus, the factorization of the domainexchange ' on the quotient is a toral translation.G. Rauzy proved in [Rau82] that the restriction of the quotient map to the Rauzy fractal is ontoand almost everywhere one-to-one. Consequently, we get that the domain exchange on the Rauzyfractal, which is known to be semi-topologically conjugate to the Tribonacci substitutive dynamicalsystem, is also measure-theoretically isomorphic to a minimal translation on the two-dimensionaltorus T2. Finally, by mixing dynamics, self-similarity and number theory, we get the two followingequivalent results:Theorem 3.4 (Rauzy, [Rau82]). The symbolic dynamical system generated by the Tribonacci sub-stitution is measure-theoretically isomorphic to a toral translation, that is, it has a purely discretespectrum.3.3. A signi�cant advance towards the understanding of the spectrum of substitutivesystems. B. Host made a signi�cant contribution to the understanding of ergodic properties ofsubstitutive systems; in [Hos86], any class of eigenfunctions is proved to contain a continuouseigenfunction (see [Wal82] for usual de�nition about ergodic theory). Thus, the two main dynamicalclassi�cations (up to measure-theoretic isomorphism and topological conjugacy) are equivalent forprimitive substitutive systems.Coboundaries { In the continuation of this, the notion of coboundaries introduced by B. Host allowsone to better understand the structure of the spectrum of a substitutive system. A coboundary of



10 ANNE SIEGELa substitution � is de�ned as a map h : A ! U (where U denotes the unit circle) such that thereexists a map f : A ! U with f(b) = f(a)h(a) for every word ab of length 2 that appears in aperiodic point for �. The coboundary de�ned by h(a) = 1 for every letter a (that is, f(a) = f(b)for every ab in the language) is called the trivial coboundary. For substitutions of constant length,nontrivial coboundaries are related to the �nite group contained in the maximal equicontinuousfactor described in Theorem 3.1. Details can be found in [PF02], Chap. 7.In the most simplest cases the only coboundary is the trivial one, that is, the constant functionequal to 1. However, there exist some substitutions with nontrivial coboundaries such as 1 7! 1231,2 7! 232, 3 7! 3123. Indeed, words of length 2 that appear in the �xed point of this substitutionbegining with 1 are 12, 23, 31 and 32. Hence for every � 2 [0; 1[, the function h(1) = 1, h(2) =e2�� = 1=h(3) de�nes a non-trivial couboundary associated with the function f(1) = 1 = f(2),f(3) = e2��.Structure of the spectrum { Coboundaries allow Host to describe precisely the structure of thespectrum de�ned in Section 3.Theorem 3.5 (Host [Hos86]). Let � be a primitive substitution over the alphabet A. A complexnumber � � U is an eigenvalue of (X� ; S) if and only if there exists p > 0 such that for everya 2 A, the limit h(a) = limn!1 �j�pn(a)j is well de�ned, and h is a coboundary of �.Hence, the spectrum of a substitutive system can be divided into two parts.Arithmetic spectrum: incidence matrix { Since the constant function equal to one 1 is always acoboundary, a su�cient condition is the following: if there exists p 2 N such that � 2 C satis�eslim�j�pn(a)j = 1 for every letter a of the alphabet, then � is an eigenvalue of the substitutivedynamical system associated with �.Such eigenvalues are said to be arithmetic since they are computable (the condition lim�j�pn(a)j =1 can be interpreted in terms of scalar product) and depend only on the incidence matrix of thesubstitution. Especially, two substitutions that di�er only by the order of occurencies of the lettersin images of the letters have the same arithmetical spectrum (see [PF02], Chapter 7).Combinatorial spectrum: return words { Conversely, the eigenvalues for non-trivial coboundariesare \non-commutative": they depend heavily on the combinatorics of the substitution. Durand[Dur98], Ferenczi [FMN96] and Livshits [Liv87] established that they depend on return words,playing the role of the height that was de�ned for substitutions of constant length. Roughly, areturn word is a word W = a1 : : : ak such that Wa1 is in a factor of the periodic point of thesubstitution, and ai 6= a1 for all i. A more precise de�nition should be found in [PF02].A condition for no combinatorial spectrum: coincidences { A combinatorial condition is related tothe existence of only a trivial coboundary. This condition is called strong coincidence condition andgeneralizes the condition of Dekking. It was de�ned by Host, Hollander and formalized by Arnouxand Ito [AI01]. Formally, � is said to satisfy the strong coincidences conditions if for every pair ofletters b1, b2, there exists a letter a and P1; S1; P2; S2 2 A� such that�n(b1) = P1 aS1 �n(b2) = P2 aS2:Coincidences are related to coboundaries by the following result (see a proof in [PF02], Chapter7).Lemma 3.6 (Host). Let � be a substitution with a nontrivial coboundary g : A ! U. Let f bethe function of modulus 1 which satis�es f(b) = g(a)f(a) as soon as the word ab belongs to thelanguage of a periodic point of the substitution. If there exist two letters a and b and a rank k suchthat� f(a) 6= f(b),



SPECTRAL THEORY FOR DYNAMICAL SYSTEMS ARISING FROM SUBSTITUTIONS 11� �k(a) begins with a and �k(b) begins with b,then � does not satisfy the coincidence condition on pre�xes.Roughtly, this lemma means that a substitutive system with coincidences do not have a com-binatorial spectrum. However, we are unable to prove this last result in general, but only forsubstitutions of Pisot type (see Section 4.2).4. Applications4.1. Properties of the spectrum of substitutive systems. From the end of the 80's, manypapers have provided conditions for a substitutive dynamical system to have a purely discrete spec-trum [Liv87, VL92, Sol92, HS03]. Some are necessary conditions, others are su�cient conditions.Let us focus on some typical examples of applications.� Weakly mixing examples of substitutive systems are derived From Host's results, as 1 7! 12121,2 7! 112, since 1 is the only eigenvalue of the associated substitutive system.� Re�nements of Host's theory allowed Livshits to de�ne conditions for pure discrete spectrumor partially continuous spectrum, as a mix of the coincidence condition and return words.Hence, the system associated with 1 7! 23, 2 7! 12, 3 7! 23, has as a continuous spectralcomponent but is not weakly mixing [Liv87, VL92].� An important result is stated by Solomyak in the case when the incidence polynomial ofa substitution is irreducible: the existence of discrete spectrum depends on the expandingeigenvalues of the incidence matrix of the substitution. Indeed, if there exist P 2 Z[X] andC 2 R such that P (�) = C for every expanding eigenvalue � of the matrix, then exp(2�iC)is an eigenvalue of (X�; S) [Sol92]. A partial converse was established by Ferenczi, Mauduit,Nogueira [FMN96]. This allows one to compute explicitly the spectrum of some substitutivesystems, such as 1 7! 1244, 2 7! 23, 3 7! 4, 4 7! 1, whose spectrum is exp(2�iZp2).4.2. A speci�c class of substitutions: substitutions of Pisot type. A substitution � is ofPisot type if every non-dominant eigenvalue � of its incidence matrix M satis�es 0 < j�j < 1.We deduce that the characteristic polynomial of the incidence matrix of such a substitution isirreducible over Q. Consequently, the dominant eigenvalue � is a Pisot number and the othereigenvalues � are its algebraic conjugates and substitutions of Pisot type are primitive (see theproofs in [PF02]). A substitution � is unimodular if det M = �1.The spectrum of substitutive systems of Pisot type has some important properties:� such systems are never weakly mixing since they have only one expanding eigenvalue so thatthey satisfy the conditions of Solomyak given in Section 4.1.� Their arithmetical spectrum can be computed thanks to Host's method. In the unimodularcase, the arithmetic spectrum is generated by the frequencies of the letters in the �xed point.In the non-unimodular case, additional rational eigenvalues have to be computed.� Substitutions of Pisot type never has a nontrivial coboundary [BK04]. Hence, their spectrumis equal to their arithmetic spectrum, which is explicit as explained in the preceeding item.From these properties, one naturally wonders whether substitutions of Pisot type have a purediscrete spectrum. Unfortunately, a positive answer is not so easy to give.The case of substitutions on a two-letters alphabet is completely studied. We �rst know from thework of Host and Solomyak-Hollander that substitutions that are of of Pisot type with coincidenceson two letters all have a pure discrete spectrum dynamical system [HS03]. Then, Barge andDiamond proved that substitutions of Pisot type on two letters always have coincidences [BD02].This yields the following theorem:Theorem 4.1. All substitutive systems of Pisot type on two letters have a pure discrete spectrum.



12 ANNE SIEGELHowever, on more than three letters, the methods used before are not successful anymore. Moreintricate results have to be proved in the avour of Rauzy's work for the Tribonacci substitution.4.3. Rauzy fractals. Starting for a substitution of Pisot type, nothing prevents one from com-puting a Rauzy fractal as done for the Tribonacci substitution:1. one can build a broken line from a periodic point of the substitution. Since the substitutionis of Pisot type, the broken line turns around a one-dimensional direction and projects onto acompact set called the Rauzy fractal of the substitution. If the substitution is not unimodular,then the projection space should take into account an arithmetic part. More precisely, thespace of projection is a product of the Euclidean space with �nite extensions of p-adic spacesthat has a non-zero Haar measure [Sie03].2. A piece on the Rauzy fractal is associated with each letter of the alphabet. The strongcoincidence condition means that the pieces are disjoint in measure [AI01]. Finally, the Rauzyfractal of a Pisot type substitution with strong coincidences appears to be self-similar andcompact.3. Shifting the �xed point, that is moving on the broken line, factorize onto an exchange ofdomains on the Rauzy fractal. Arnoux and Ito proved that the shift map and the domainexchange are equivalent from a spectral point of view, as stated in Theorem 4.2.
1 7! 11223, 2 7! 123,3 7! 2 1 7! 12, 2 7! 31, 3 7! 1 1 7! 131,2 7! 1,3 7! 1132

1 7! 12, 2 7! 13, 3 7! 132 1 7! 1112, 2 7! 12Figure 6. Example of Rauzy fractals for substitutions of Pisot type.Theorem 4.2. Let � be substitution of Pisot type over a d-letter alphabet which satis�es thecondition of coincidence. Then the substitutive dynamical system associated with � is measure-theoretically isomorphic to the exchange of d domains de�ned almost everywhere on the Rauzyfractal of �, that is, a self-similar compact set on a product of the Euclidean space with �niteextensions of p-adic spaces that has a non-zero Haar measure.Notice that we do not know any example of a substitution of Pisot type with no strong coinci-dence.As for the Tribonacci substitution, there is no problem to factorize the Rauzy fractal through alattice on an compact abelian group, so that the exchange of domains reduces to a group translation.



SPECTRAL THEORY FOR DYNAMICAL SYSTEMS ARISING FROM SUBSTITUTIONS 13The question is the same as before: is this representation one-to-one? Unfortunately, the methodsused for the Tribonacci substitution are quite speci�c and cannot be generalized. Anyway, someresearches on that direction allow to deduce from the factorization of Rauzy fractal on compactabelian groups some combinatorial conditions for pure discrete spectrum. These conditions arebased either on graphs [Sie04, Thu] or on the notion of balanced pairs [BK04, RI]. The problem isthat the conditions are not general and need to be checked by hand on each substitution.Since each example of a substitution of Pisot type that have been tested has a pure discretespectrum, the point now is to exhibit some families of substitutions that provide a pure discretespectrum dynamical system. 5. ConclusionAs a conclusion, we would like to emphasize the fact that the results exposed here mainly dealwith spectral theory but can be also be expressed in more geometrical terms. Indeed, pure discretespectrum has a nice geometrical equivalent in the unimodular case: thanks to the geometricalrepresentation with Rauzy fractal, it is proved that a substitution of Pisot type with coincidencehas a pure discrete spectrum if and only if its Rauzy fractals generates a periodic tiling of theplane [Sie04, RI, BK04]. Hence, conditions for pure discrete spectrum discussed above allowsone to prove that the Rauzy fractals generated by the Tribonacci substitution, the substitution1 7! 11223, 2 7! 123, 3 7! 2, or the substitution 1 7! 12, 2 7! 3, 3 7! 1 generate a periodic tiling.More generally, all the Rauzy fractal showed before do generate a periodic tiling.
Tribonaccisubstitution 1 7! 11223, 2 7! 123,3 7! 2 1 7! 12, 2 7! 3, 3 7! 1Figure 7. Periodic tilings generated by Rauzy fractals.Hence, substitutions have relations with a quite large number of mathematical domains (furtherillustrations are given in [PF02]). Combination of combinatorics, spectral theory, geometry andnumber theory will allow now to consider and apply this simple combinatorial object (a substitution)in di�erent directions:� proving general results on discrete spectrum and tilings;� application to �-numeration and diophantine analysis [Bas02, Aki99];� Generation of discrete planes [ABI02, ABS04];� Models for quasi-crystals [Sen95, Lag99];� Construction of explicit Markov partitions for toral automorphisms [IO93, KV98].References[ABI02] P. Arnoux, V. Berth�e, and S. Ito. Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions.Ann. Inst. Fourier (Grenoble), 52(2):305{349, 2002.[ABS04] P. Arnoux, V. Berth�e, and A. Siegel. Two-dimensional iterated morphisms and discrete planes. Theor.Comp. Sci., 319:145{176, 2004.[AFH99] P. Arnoux, S. Ferenczi, and P. Hubert. Trajectories of rotations. Acta Arith., 87(3):209{217, 1999.
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