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Stochastic constructions of flows of rank 1

A. A. Prikhod’ko

Abstract. Automorphisms of rank 1 appeared in the well-known papers of Chacon
(1965), who constructed an example of a weakly mixing automorphism not hav-
ing the strong mixing property, and Ornstein (1970), who proved the existence of
mixing automorphisms without a square root. Ornstein’s construction is essentially
stochastic, since its parameters are chosen in a ‘sufficiently random manner’ accord-
ing to a certain random law. In the present article it is shown that mixing flows
of rank 1 exist. The construction given is also stochastic and is based to a large
extent on ideas in Ornstein’s paper. At the same time it complements Ornstein’s
paper and makes it more transparent. The construction can be used also to obtain
automorphisms with various approximation and statistical properties. It is estab-
lished that the new examples of dynamical systems are not isomorphic to Ornstein
automorphisms, that is, they are qualitatively new.
Bibliography: 19 titles.

The fundamental ideas in the theory of approximation of dynamical systems,
which is one of the actively evolving areas of modern ergodic theory, were put forth
at the end of the 1960s in publications of Katok, Oseledets, and Stepin (see [1]–[5]).
Several years later they had been broadly developed and had become an integral
part of many investigations in the area of dynamical systems, among which we
mention the work of Chacon, Keane, Ornstein, Sataev, and others (see [6]–[9]).
The approximation theory method consists in approximating a given action with
invariant measure (a cascade, flow, and so on) by an action with a simple struc-
ture, for example, periodic. This method turns out to be very useful in the spectral
theory of dynamical systems, for example, in questions involving spectral multiplic-
ity (see [1], [9]) or the group property of the spectrum, introduced by Kolmogorov.
Recently Ageev and Ryzhikov applied the approximation theory method to the
solution of the Rokhlin problem on the existence of a transformation with homo-
geneous spectrum of multiplicity 2. Another illustration of the foregoing is the
investigation of a number of metric properties of flows on surfaces of genus p � 1
(see [4], [5]) by reduction to the study of interval exchange transformations, systems
having nice approximation properties ([7], [10]).
At the basis of the theory of approximation of dynamical systems is the well-

known Rokhlin–Halmos lemma (see [11]) asserting that if an automorphism T of a
Lebesgue space (X,A, µ) is aperiodic, then for any ε > 0 and h ∈ N there is a B ∈ A
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such that the sets B, TB, . . . , Th−1B are disjoint and µ(B � TB � · · · � Th−1B) is
greater than 1 − ε. A set of the form U = B � TB � · · · � Th−1B is called a
Rokhlin–Halmos tower of height h.
The study of approximation properties of dynamical systems can be reduced in

a natural way to the investigation of systems of rank 1. An automorphism T
is called a transformation of rank 1 if there is a sequence of partitions ξn =
{Cn, TCn, T 2Cn, . . . , Th−1Cn, Yn} of X that converges to the partition into points
(this means that any measurable set can be approximated arbitrarily well by ξn-
measurable sets). Automorphisms of rank 1 were first considered by Chacon [6]
and Ornstein [12]. Actions of rank 1 include the set of classical dynamical systems
such as systems with pure point spectrum (see [13]). Automorphisms of rank 1 also
lie at the basis of many constructions, in particular, counterexamples in ergodic
theory. For example, it is known that mixing transformations of rank 1 commute
only with their powers T k and as a consequence do not have roots.
In the theory of joinings, systems of rank 1 and their generalizations—systems

of finite and local rank—make up one of the most thoroughly studied classes of
actions. A joining (of second order) of an action {T g}g∈G of a group G on a space
(X,A, µ) is defined to be a measure ν on the direct product X×X that is invariant
with respect to the transformations T g×T g , g ∈ G, and has the following property:
the projections ν onto the direct factors coincide with µ. In contemporary ergodic
theory the concept of a joining is one of the most effective tools for investigating
dynamical systems (see [14] and also [15] and [16]).
For example, joinings arise naturally in investigations connected with the famous

Rokhlin problem on multiple mixing [11]. An automorphism T is said to be mixing
with multiplicity r if

µ(T t0A0 ∩ T t1A1 ∩ · · · ∩ T trAr)→ µ(A0)µ(A1) · · ·µ(Ar)

as |ti−tj | → ∞. The Rokhlin problem can be stated as follows: does simple mixing
imply mixing of all orders? It has been proved that for automorphisms of finite
rank the answer to Rokhlin’s question is affirmative (see [17]). Moreover, for an
automorphism of rank 1 the mixing property implies the property of minimality
of joinings of second order, which consists in the set of all such joinings being
exhausted by the measures µ × µ and (I× T k)∆, where ∆ is the diagonal joining

∆(A×B) = µ(A ∩B).

A generalization of this concept is the property of primeness (introduced by Veech,
Rudolph, and del Junco; see [18] and [19]), which differs in that the existence of
joinings of the form (I × S)∆ is allowed, where S is an arbitrary automorphism
commuting with T .
In the present article we present a construction of mixing flows of rank 1. We

thereby establish the existence of such flows and give new examples of prime flows.
Our construction is based on a universal construction of flows of rank 1, defined

in detail in § 1. This construction is given by the following parameters: a sequence of
heights hn of approximating towers and a set of positive numbers sn,j, 0 � j � qn.
Our construction of mixing flows of rank 1 is stochastic in the following sense.
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The parameters sn,j are chosen as realizations of independent random variables ξn
(this is made more precise in § 2). Thus, a random family {T tω} (ensemble) of flows
is constructed, where ω runs through a corresponding probability space Ω (which is
a Lebesgue space). It is established that under certain restrictions on the sequences
hn and sn,j the flow {T tω} is almost surely mixing.

§ 1. A universal construction of a flow of rank 1
Let T = (T t)t∈R be a measurable flow on a Lebesgue space (X,A, µ), that is,

a family of automorphisms T t of X satisfying the condition T t+u = T tTu. The
flow T is said to be measurable if the function F (t, x) := T tx is measurable as a
function of the two variables x and t.

Definition 1.1. Let h > 0 and let B[0, h] denote the σ-algebra of Borel subsets
of [0, h]. A Rokhlin–Halmos tower (or simply a tower) of height h is defined to be
a map ϕ : U → [0, h], U ∈ A, with the following properties:
(a) the map ϕ is measurable, that is, B ∈ B[0, h]⇒ ϕ−1B ∈ A;
(b) ifB ∈ B[0, h] and StB ⊆ [0, h], then T tϕ−1B = ϕ−1StB, where Stx := x+t.

A tower is sometimes defined to be a set [ϕ] := U = ϕ−1[0, h]. Associated with
each tower ϕ is the σ-algebra A(ϕ) ⊆ A generated by the sets ϕ−1B, B ∈ B[0, h],
and X \ [ϕ].

Definition 1.2. A flow T is said to be a flow of rank 1 if there is a sequence of
towers ϕn with the following properties:

(a) µ[ϕn]→ 1;
(b) A(ϕn) → A, that is, for any set A ∈ A there exist sets An ∈ A(ϕn) such
that µ(A� An)→ 0 as n→∞.

Remark 1.3. The approximating sequence of towers ϕn for a flow of rank 1 can be
chosen so that A(ϕn) ⊂ A(ϕn+1).
This simple fact gives us that any flow of rank 1 can be obtained as a result of

the following construction.
Universal construction of a flow of rank 1. Let {hn}∞n=0 be an increas-

ing sequence of positive numbers, and let In be the circle R/hnZ, identified with
the closed interval [0, hn] with the end-points glued together. Suppose that Jn ⊂
(0, hn+1) are given sets that are disjoint unions of open intervals Jn,k = ln,k+(0, hn),

1 � k � qn. Let
←
ϕn : In+1 → In be the natural projection acting according to the

rule

←
ϕn : ln,k + t 
→ t ∀ k, ∀ t ∈ (0, hn),

←
ϕn : t 
→ 0 ∀ t /∈ Jn.

We remark that
←
ϕn is a monotone continuous map from In+1 to In of degree qn.

Let ϕj,n =
←
ϕn ◦ · · · ◦

←
ϕj−1, j > n. Let M0 = h0 and define

Mn+1 =
λ(In+1)

λ(Jn)
Mn, where λ is Lebesgue measure on R.
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We assume that
M := lim

n→∞
Mn <∞,

and we set mn := Mn/M . On the circle In we define the probability measure
µn = (1 − mn)δ0 + mnλn, where δ0 is the δ-function with support at zero and
λn := h

−1
n λ is normalized Lebesgue measure on In. Then ϕj,nµj = µn. We consider

the set X of sequences x = (t0, t1, . . . ) such that
←
ϕntn+1 = tn. Let ϕn : X → In be

the natural projection, ϕn : (t1, t2, . . . ) 
→ tn. On the set X we consider the family
of σ-algebras

An := {ϕ−1n B : B ∈ B(In)}, An ⊆ An+1, and let A :=
∨
n

An.

The measures µn can be regarded as measures on the σ-algebras An. More pre-
cisely, let ϕ∗nµn(ϕ

−1
n (B)) := µn(B), where B ∈ B[0, hn]. The measures ϕ∗nµn are

consistent in the following sense: ϕ∗jµj |An = ϕ∗nµn if j � n. Therefore, there is a
unique measure µ defined on the σ-algebra A and such that µ|An = ϕ∗nµn, and the
space (X,A, µ) constructed is a Lebesgue space. This space is called the inverse
limit of the spaces (In,B(In), µn).
We define the flow T = (T t) on the space X as follows. Let x = (t1, . . . , tn, . . . )

be a point in X, and consider the sequence (u1, . . . , un, . . . ), where un := t1 + t
(mod hn). It is not hard to see that for µ-almost all points x there is an n0 such

that
←
ϕnun+1 = un for all n > n0. Let T

tx be the sequence (ũ1, . . . , ũn, . . . ) with
ũn := un for n � n0 and ũn := ϕn0,nun for n < n0. It is easy to show that T t
is a map preserving the measure µ and that T tTux = T t+ux for µ-almost all x.
Moreover, T = (T t) is a flow of rank 1 with sequence of approximating towers
ϕn|Un, where Un := ϕ−1n (0, hn) = X \ ϕ−1n {0} and ϕn|Un is the restriction of the
function ϕn to the set Un.

§ 2. The stochastic construction
The goal of this section is to describe in detail a stochastic construction of flows

of rank 1 and to state the main theorem.
Namely, we construct a family {Tω} of flows of rank 1 parametrized by points ω

in a probability space Ω for which it will be proved that, under certain conditions
on the parameters of the construction, the flow Tω is almost surely mixing.
In § 1 we discussed the general construction of a flow of rank 1, in which the

basic role is played by the maps
←
ϕn : In+1 → In determined by the parameters hn

and ln, k, 1 � k � qn. Noting that ln,k+1− ln,k � hn, we define the new parameters
sn, k = ln,k+1 − ln,k − hn, and we let sn,0 = ln,1 and sn,qn = hn+1 − ln,qn − hn.
The idea of the stochastic construction consists in regarding the parameters sn,k as
independent realizations of a random variable ξn. This idea is made more precise
as follows.
We fix a sequence of distributions ξn on R+ = [0,∞) such that ξn  hn, that

is, ξn � ρnhn, where ρn → 0 as n→∞.
Lemma 2.1. a) There is a stationary random process Φn with continuous time
that satisfies the following conditions:

(1) Φn : R→ In is a continuous map;
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(2) if Φn(u) = a ∈ (0, hn) and t � hn − a, then Φn(u+ t) = a+ t;
(3) if [t1, t2] is a connected component of the set Φ

−1
n (0), then the length of this

closed interval is distributed like ξn, that is, P{t2 � t | t1} = P{ξn � t− t1}.
b) There is a Markov process Φ̃n such that :

(1̃) Φ̃n : R→ In � R2+;
(2̃) Φ̃n(t) = Φn(t) if and only if Φn(t) �= 0, and Φ̃n(t) = (l−, l+) if and only
if Φn(t) = 0 and [t − l−, t + l+] is the connected component of Φ−1n (0)
containing t.

Remark 2.2. The processes Φn and Φ̃n are naturally isomorphic: a realization of
one of these processes can be uniquely recovered from a realization of the other.
The definition of a random flow of rank 1 will involve the process Φn and the proofs

will use the process Φ̃n.

Remark 2.3. The processes Φn and Φ̃n exist if and only if the random variable ξn has
finite variance. We mention also the important circumstance that the probability
space of realizations of the process Φn is a Lebesgue space.

Proof of Lemma 2.1. Thus, we construct the auxiliary Markov process Φ̃n : R →
In�R2+. For this it is convenient to introduce another Markov process Ψ equivalent
to Φ̃n. Namely, let the line R be partitioned into the half-open intervals [tk, tk+1)
by the points tk—the left-hand end-points of the open intervals of length hn making
up Φ̃−1n (0, hn)—numbered arbitrarily. The processes Φ̃n and Ψ: R→ R2+ are con-
nected by the following relation: Ψ(t) = (l−, l+) if t ∈ [tk, tk+1), where l− = t− tk
and l+ = tk+1 − t. Let

P (s) :=

{
pn(s− hn) if s � hn,
0 otherwise,

where pn is the density of ξn. It is clear that P is the density of the random variable

hn + ξn. We consider the function P̃ (l
±) = L−1pn(l

− + l+), where L = hn + ξn,
and we show that it is a stationary density for the Markov process Ψ, which we
specify by the transition probabilities

τε(l
±, l±ε ) =

{
δl±+(ε,−ε)(l

±
ε ) if l+ > ε,

δε−l+(l
−
ε )P (l

−
ε + l

+
ε ) if l

+ � ε,

where 0 < ε < hn. The transition probabilities τu are defined as follows for arbitrary
u > 0. We consider some partition of [0, u) into half-open intervals [uk−1, uk),
k = 1, . . . , K, such that uk − uk−1 < hn, and we set

τu(l
±, B) :=

∫
R2+

τu1(l
±, dl±1 )

∫
R2+

τu2−u1(l
±
1 , dl

±
2 ) · · ·

∫
B

τuK−uK−1(l
±
K−1, dlk),

where B is a measurable subset of R2+. This definition can be shown to be unam-
biguous, that is, the measures defined do not depend on the choice of partition,
and we do not dwell on this simple computation. We merely remark that it suffices
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to verify the correctness of the definition for u ∈ (0, hn), since from any pair of
partitions we can pass to their least upper bound, while for small u the correct-
ness (which is equivalent to the Chapman–Kolmogorov conditions) can be verified
directly.
For u < 0 the measures τu are defined similarly.

We verify that the density P̃ really is stationary. Let

ηε(B) :=

∫
R2+

P̃ (l±)τε(l
±, B) dl±.

For a measurable set B ⊂ {l−ε > ε} we have

ηε(B) =

∫
(−ε,ε)+B

P̃ (l±) dl± =

∫
B

P̃ (l±) dl±,

and for B ⊂ {l−ε � ε}∫
{l+�ε}

P̃ (l±) dl±
∫
{l+ε :(ε−l+,l+ε )∈B}

P (ε− l+ + l+ε ) dl+ε

=

∫ ε
0

L−1 dl+
∫
{l+ε :(ε−l+,l+ε )∈B}

P (ε− l+ + l+ε ) dl+ε

= L−1
∫
B

P (z, l+ε ) dz dl
+
ε =

∫
B

P̃ (l±ε ) dl
±
ε .

Thus, it is proved that the distribution determined by the density P̃ is stationary.
We recall that there is a one-to-one correspondence between the processes Ψ

and Φ̃n. Let mn := hn/(hn + ξn). We compute the stationary density p̃n for

the process Φ̃n, that is, the density corresponding to P̃ of the distribution of the
random variable Φ̃n(0):

p̃n(x) =

∫ ∞
0

P̃ (x, l−) dl− = L−1 = h−1n mn, x ∈ In;

p̃n(l
±) = P̃ (l− + hn, l

+) = h−1n mn pn(l
− + l+), l± ∈ R2+.

To get the process Φn from the process Φ̃n, it suffices to set Φn(t) = Φ̃n(t) if
Φn(t) ∈ In, and Φn(t) = 0 otherwise.
The properties (2), (3), and (2̃) follow immediately from the definition of the

transition probabilities τu.

We now have all the necessary data to proceed to the description of the sto-
chastic construction of flows of rank 1. Let Ω be the probability space that is the
direct product of the spaces of realizations of the random processes Φn; then the Φn
are jointly independent. For each n we consider a realization of the random pro-

cess Φn(t) and define the map
←
ϕn as follows. If the interval (t0, t0 + hn) forming

the set Φ−1n (In \ {0}) is entirely contained in the interval (0, hn+1), then we set←
ϕn(t) := Φn(t) for t ∈ (t0, t0 + hn); otherwise,

←
ϕn(t) := 0.

We let σn :=
√
Dξn and note that, since ξn � 0, it follows from the Cauchy–

Bunyakovskĭı–Schwarz inequality that

ξn := Eξn � σn.
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Lemma 2.4. If qn := hn+1/hn→ 1 and
∑∞
n=1 σn/hn <∞, then the sequence

←
ϕn

almost surely correctly determines a space Xω with a finite measure and a flow Tω
of rank 1 on it.

Let κn := h
2
n/σ

2
n. Suppose also that the random variable ξn has a density pn

that is a function of bounded variation. Let p̂n be the Fourier transform of the
function pn:

p̂n(x) :=

∫ ∞
0

e−2πixtpn(t) dt.

Theorem 2.5. Suppose that the flow Tω is the result of the above construction
depending on the parameters hn and ξn, and assume that the following conditions
hold for some constants 0 < χ < 1 and γ, ε, C1, C2 > 0:

(1) ‖(1 + C1σ2nx2)1/2 p̂n(x)‖∞ � 1;
(2)
∏
j<n qj � C2 qγn;

(3) ‖q−χn−1hnpn‖∞ → 0;
(4)

κn

q1−χ−εn

→ 0.

Then the flow Tω is mixing with probability 1.

§ 3. Example of a family of mixing flows of rank 1
We now present a corollary to Theorem 2.5 giving a simple yet sufficiently general

example of an ensemble of mixing flows of rank 1. Let us fix a distribution ξ on R+
with density p(t) such that ξ �M <∞. Let ξn have the density pn := p(t/σn)/σn.
In this case Theorem 2.5 takes the following form.

Corollary 3.1. If

q−χn−1
√
κn → 0,

κn

q1−χ−εn

→ 0, and
∏
j<n

qj � C2qγn,

then the flow Tω is mixing with probability 1.

Proof. We verify the conditions (1) of the theorem. Indeed, since the variance of
the random variable ξ is finite, there is a constant C1 such that

p̂(t) � (1 + C1x2)−1/2, t ∈ R.

But pn(x) = p(σnx), and hence

‖(1 + C1σ2nx2)1/2p̂n(x)‖ � 1.

The condition (2) in Theorem 2.5 takes the form indicated in the corollary,
because ‖pn‖∞ = σ−1n ‖p‖∞. The corollary is proved.
Let us now consider a more concrete example. Let hn = 2

mn and σn = 2
αmn .

Then qn = 2
(m−1)mn and κn = 2

2(1−α)mn. The fourth condition in the theorem
follows from the estimate∏

j<n

qj = 2
(m−1)

∑
j<nm

n � q1/(m−1)n ,
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and the conditions (2) and (3) take the form

q−χn−1hn

σn
→ 0, q1−χ−εn

κn
→∞,

that is,

−χ(m− 1)
m

+ 1− α < 0, (1− χ)(m− 1)− 2(1− α) > 0;

hence
m(1 − α)
m− 1 < χ <

2α+m− 3
m− 1 .

Obviously, the desired constant χ exists if and only if m(1 − α) < 2α+m− 3,
that is,

α >
3

2 +m
.

§4. Scheme of proof of the main theorem
The proof of Theorem 2.5 is constructed as follows. The direct proof, which

makes up the content of § 7, is preceded by the necessary probabilistic constructions,
the formulation of which is independent of the main result, and by the proofs of
all the necessary lemmas. Namely, in § 5 we establish some theorems on large
deviations for a special type of random processes with continuous time, and then
in § 6 we investigate the asymptotic behaviour of the random processes Φn used in
the stochastic construction. Finally, in § 7 we prove the main theorem on the basis
of the results obtained.

§ 5. Lemmas on large deviations
A discrete random process is defined to be a two-sided sequence of random vari-

ables ηj with values in some finite alphabet A. A process is said to be station-
ary if the joint distribution µk of the variables ηs+1, . . . , ηs+k does not depend
on s. The measure µk is given on the finite set of k-blocks: the sequences (words)
ak1 = a1a2 . . . ak with aj ∈ A. Let µ be the measure on A∞ :=

∏
j∈ZA correspond-

ing to the process η.
Let us consider an n-block xn1 = x1x2 . . . xn. We use the expression x

j
i to denote

the subword xixi+1 . . . xj . The empirical distribution of order k with respect to x
n
1

is defined to be the measure pk( · | xn1 ) on Ak defined by

pk(a
k
1 | xn1 ) =

Nk(a
k
1)

n− k + 1 , where Nk(a
k
1) := #{j : x

j+k−1
j = ak1}.

Lemma 5.1. Assume that the random variables ηj are independent. Then there
is an absolute constant c0 such that

µ{x : ‖p1( · | xn1 ) − µ1‖ > ε} � (n + 1)#Ae−c0nε
2 ∀ ε > 0,

where ‖ · ‖ denotes the variation norm in the space of measures.
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We fix an s ∈ [0, k+ g), where g � k < n are positive integers, and we consider
the (random) sequence of k-blocks

w
(s)
t := x

s+t(k+g)+k−1
s+t(k+g) , 0 � t < T(s),

where T(s) is the total number of blocks w
(s)
t in x

n
1 . We define

N (s)(ak1) := #{t : w
(s)
t = a

k
1} and p

(s)
k (a

k
1) :=

N (s)(ak1)

T(s)
.

Lemma 5.2. If n > 8k and g � k, then

∣∣∣∣pk(ak1 | xn1 )− 1

k + g

k+g−1∑
s=0

p
(s)
k (a

k
1 | xn1 )

∣∣∣∣ � 10kn pk(ak1 | xn1 ).
Proof. Obviously,

N(ak1) =

k+g−1∑
s=0

N (s)(ak1) and n− 2(k + g) � (k + g)T(s) � n.

Using these relations, we get that

∣∣∣∣pk(ak1 | xn1 )− 1

k + g

k+g−1∑
s=0

p
(s)
k (a

k
1 | xn1 )

∣∣∣∣
=

∣∣∣∣ N(ak1)n− k + 1 −
1

k + g

k+g−1∑
s=0

N (s)(ak1)

T(s)

∣∣∣∣
�
k+g−1∑
s=0

N (s)(ak1)

∣∣∣∣ 1

n− k + 1 −
1

(k + g)T(s)

∣∣∣∣
� k + 2(k + g)
n− 2(k + g)

k+g−1∑
s=0

N (s)(ak1)

n− k + 1

� 5k

n− 4kpk(a
k
1 | xn1 ) �

10k

n
pk(a

k
1 | xn1 ),

since 4k < n/2. This is what was to be proved.

Corollary 5.3. If A ⊆ Ak and n > 8k, then

∣∣∣∣pk(A | xn1 )− 1

k + g

k+g−1∑
s=0

p
(s)
k (A | x

n
1 )

∣∣∣∣ � 10kn .
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Corollary 5.4. Let A ⊆ Ak and n > 8k. Then the inequality |p1(A | xn1 ) − pk(A |
xn1 )| � 2k/n implies the estimate∣∣∣∣p1(A | xn1 )− 1

k + g

k+g−1∑
s=0

p
(s)
k (A | x

n
1 )

∣∣∣∣ � 12kn .
Definition 5.5. For words (blocks) w′ and w′′ of respective lengths �′ and �′′ we

define the event w′〈g〉w′′ to be the set of sequences x such that x�′1 = w′ and
x�
′+g+�′′

�′+g+1 = w
′′. We say that the process ηj is ψ-mixing, where ψ : N→ [1,+∞], if

µ(w′〈g〉w′′) � ψ(g)µ(w′)µ(w′′)

for any w′ and w′′ of the indicated form.

Lemma 5.6. Let η be a ψ-mixing stationary process with the alphabet A and let
n > 24k/ε and ε < 1. Then

µ
{
x : ‖p1( · | xn1 )− µ1‖ > ε#A

}
� #A · 2k

(
n

2k
+ 1

)2
ψ(k)n/(2k) exp

(
−c0ε

2

8

n

2k

)
.

Proof. Let A := {x : x1 = a} and g := k. We assume that

|p1(A | xn1 ) − µ(A)| > ε;

then in view of Corollary 5.4 there is an s such that

|p(s)k (A | xn1 )− µ(A)| > ε−
12k

n
>
ε

2
.

We consider the Bernoulli random process κ̃t ∈ {0, 1} given by the probability
vector (µ(A), 1− µ(A)), and we compare it with the process

κt =

{
1 if w

(s)
t ∈ A,

0 otherwise,

induced by the process η. By Lemma 5.1,

γ
{
x̃ : ‖p̃1( · | x̃n1 )− γ1‖ > ε′

}
� E = (T(s) + 1)2 exp(−c0ε′2T(s)) ∀ ε′ > 0,

where γ is the measure corresponding to the process κ̃t, and p̃k is the empirical
distribution constructed from γ. Using the ψ-mixing property, we get that

µ

{
x : |p(s)k (A | x

n
1 ) − µ(A)| >

ε

2

}
� ψ(k)T(s)γ

{
x̃ : ‖p̃1( · | x̃T

(s)

1 )− γ1‖ >
ε

2

}
� ψ(k)T(s)(T(s) + 1)2 exp

(
−c0T(s)

ε2

4

)
.

Thus, the probability of the event of interest to us can be estimated by the quantity

#A · 2k
(
n

2k
+1

)2
ψ(k)n/(2k) exp

(
−c0ε

2

8

n

2k

)
, since g+k = 2k and T(s) � n

4k
.
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Definition 5.7. Let N be fixed, and suppose that the stationary random pro-
cess η(t) satisfies the following weaker property than ψ-mixing:

µ(w′〈g〉w′′) � ψ(g)µ(w′)µ(w′′)
if w′ = w′s

′+l′

s′ and w′′ = w′′s
′′+l′′

s′′ are blocks such that s′, s′′, s′ + l′, s′′ + l′′ belong
to {1, . . . , N}, and ψ : N→ [1,+∞]. We call this the (N)ψ-mixing property.
We need the following modification of Lemma 5.6, which encompasses (N)ψ-

mixing processes.

Lemma 5.8. Let η be an (N)ψ-mixing stationary process with the alphabet A,
assume that the requirement stated above holds, and let 24k/ε < n < N and ε < 1.
Then

µ
{
x : ‖p1( · | xn1 )− µ1‖ > ε#A

}
� #A · 2k

(
n

2k
+ 1

)2
ψ(k)n/(2k) exp

(
−c0ε

2

8

n

2k

)
.

The proof repeats word-for-word that of Lemma 5.6.

Theorem 5.9. Suppose that η is a ψ-mixing or (N)ψ-mixing stationary process,

ψ(k) =

{
1 + ec−ωk if k � k0,
∞ otherwise,

with alphabet A = {0, 1}, and assume the conditions of Lemma 5.6 or 5.8, respec-
tively. Further, assume that

k0 �
lnn+ c

ω
� n2/3, ωn

lnn+ c
> 24

(
64

c0ε2

)2
> 24.

Then

µ{x : ‖p1( · | xn1 ) − µ1‖ > ε} � C1 exp
(
−c1ε2

ωn

lnn+ c

)
.

Proof. The estimate of the probability of a large deviation has the form

µ
{
x : ‖p1( · | xn1 ) − µ1‖ > ε

}
� 4k

(
n

2k
+ 1

)2
(1 + ec−ωk)n/(2k) exp

(
−c0ε

2

32

n

2k

)
.

Setting k := (lnn + c)/ω, we have

µ{x : ‖p1( · | xn1 )− µ1‖ > ε} � 4k
(
n

2k
+ 1

)2(
1 +
1

n

)n/(2k)
exp

(
−c0ε

2

32

n

2k

)
� 8
(
n

2k

)2
exp

(
−c0ε

2

32

n

2k

)
(	)

� exp
(
−c0ε

2

64

n

2k

)
= exp

(
−c1ε2

ωn

lnn+ c

)
,

which is what was required to prove. Here we have used the following chain
of arguments. First, (1 − n−1)n ↗ e as n → ∞, and k > 1, therefore, the
sequence (1− n−1)n/(2k) is uniformly bounded. Further, let z = n/(2k). Then z �
3γ−1 ln(24γ−1), where γ := c0ε

2/64, since by assumption z � 12γ−2 = 3γ−1 · 4γ−1
and 4γ−1 � ln(24γ−2) for any γ � 1. The inequality obtained can be rewritten in
the form u � 3 ln(3m), where u = γz and m := 8γ−2. The last inequality is easily
seen to imply that mu2 � eu or, which is the same, 8z2 � eγz , and this proves the
inequality (�).

We proceed to the consideration of a stationary random process η(t) ∈ A = {0, 1}
with continuous time.
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Definition 5.10. We consider sets w′ and w′′ of realizations of the random pro-
cess η that are measurable with respect to the coordinate σ-algebras corresponding
to the closed intervals

[t′, t′ + l′] and [t′′, t′′ + l′′].

Assume that t′′ > t′ + l′. We say that the process η is (N)ψ-mixing , where ψ : R+ →
[1,+∞], if for any such events w′ and w′′

µ(w′ ∧ w′′) � ψ(t′′ − (t′ + l′))µ(w′)µ(w′′).

Accordingly, suppose that the process η is (N)ψ-mixing with the function

ψ(t) =

{
1 + ec−ωt if t � t0,
∞ otherwise.

We assume that the set
Iη = {t ∈ R : η(t) = 1}

is (µ-almost surely) a union of closed intervals.

Theorem 5.11. Suppose that for some constants ρ and h

#(∂Iη ∩ [0, t]) �
ρt

h
and ωτ � c, where τ := εh

4ρ
,

and, moreover,

t0

τ
� ln(T/τ) + c

ωτ
�
(
T

τ

)2/3
,

ωT

ln(T/τ) + c
> 24

(
28

c0ε2

)2
> 24.

Then there is a constant c3 such that

µ

{∣∣∣∣ 1T
∫ T
0

η(t) dt− η
∣∣∣∣ > ε} � exp(−c3ε2 ωT

lnT − ln(εh/(4ρ)) + 2c

)
.

Proof. Setting τ := εh/(4ρ), we consider the stationary sequence

η̃j =

{
1 if η(t) = 1 ∀ t ∈ [jτ, (j + 1)τ ],
0 otherwise.

And setting

η(τ)(t) :=

∫ τ
0

η(t + u) du,

we note that Eη(τ) = η. Therefore, it follows from the stationary property that

|Eη̃ − η| = |Eη̃ − Eη(τ)| � µ{η : ∂Iη ∩ [0, τ ] �= ∅} �
ρτ

h
=
ε

4
.
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It follows from the first condition of the theorem that∣∣∣∣ 1T
∫ T
0

η(t) dt − p1(1 | xn1 )
∣∣∣∣ � #(∂Iη ∩ [0, T ])T/τ

� ρT/h

T/(εh/(4ρ))
=
ε

4
.

Further, the process ηj is ψ̃-mixing with the function

ψ̃(j) = ψ((j − 1)τ).

By the preceding lemma,

µ

{
x : |p1(1 | xn1 ) − µ1(1)| >

ε

2

}
� exp

(
−c1ε

2

4

ωT

lnT − ln τ +ωτ + c

)
.

Thus,∣∣∣∣ 1T
∫ T
0

η(t) dt− η
∣∣∣∣ � ∣∣∣∣ 1T

∫ T
0

η(t) dt− p1(1 | xn1 )
∣∣∣∣+ |p1(1 | xn1 )− Eηj |+ |Eηj − η|

� ε
4
+
ε

2
+
ε

4
= ε.

It remains to let c2 := c1/4. The proof of the theorem is complete.

§ 6. Some limit theorems
In this section we investigate properties of the random process Φn(t). Namely,

we establish a property of Φn(t) analogous to the exponential mixing property.
Since Theorem 2.5 is close in methods of proof to assertions about convergence of
convolutions of regular probability measures on the circle, we begin by considering
this simpler case as an illustration. Let T = R/Z.

Definition 6.1. A Gaussian measure on T is defined to be a measure of the form

ζ(B) =

∫
B+Z

1√
2πσ
e−(u−a)

2/(2σ2) du, B ∈ B(T), T � [0, 1),

where a and σ are constants.

We consider the random variables

ζn := π
∗
n(δ−ξn

∗ ξn)∗�κn�,

where πn : In → T is the natural projection.

Lemma 6.2. Suppose that the distributions ξn satisfy the conditions of Theo-
rem 2.5. Then the densities of the measures ζn converge uniformly to the den-
sity pg(u) of the Gaussian measure with parameters (0, 1), that is,

‖π∗n(δ−ξn ∗ pn)
∗�κn� − pg‖∞ → 0 as n→∞,
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where π∗n(δ−ξn ∗ pn) is the density of the measure π
∗
n(δ−ξn ∗ ξn):

π∗n(δ−ξn ∗ pn)(u) = hnpn(ξn + uhn).

We remark that pg(u) > 1/2, and thus it can be assumed without loss of general-

ity that |p∗�κn�n (t)| > 1/2 for any n, where the convolution is defined in the natural
way

(p1 ∗ p2)(t) :=
∫
In

p1(w)p2(t −w) dw.

Proof of Lemma 6.2. We denote by Pn(t) = hnpn(ξn + thn), t ∈ In, the density of
the measure π∗n(δ−ξn ∗ ξn). To establish the uniform convergence of the densities
of the measures ζn to the density pg(u) of the Gaussian measure it suffices to prove

convergence in L1(R) of the functions P̂
	κn

n to the function e−2π

2x2 , where P̂n(x)
is the Fourier transform of the function Pn(t):

P̂n(x) :=

∫
In

e−2πixtPn(t) dt, x ∈ h−1n Z.

We show first that P̂
�κn�
n (x)→ e−2π2x2 at any point x. Indeed,

P̂n(x) = 1−
2π2x2

κn
+ En(x), κn =

h2n
σ2n
.

To estimate En(x), we assume for the time being that Pn is a function on R (in

this case P̂n is also defined on R, and not just at points of the form kh
−1
n , k ∈ Z).

Then

En(x) =
∑
r�3

P̂
(r)
n (0)

r!
xr,

because P̂n is an entire function. Noting that

P̂ (r)n (0) = (2πi)
r

∫ ρn
0

trPn(t) dt, supp ξn ⊆ [0, ρnhn],

we have

|P̂ (2)n (0)| � 4π2
∫ ρn
0

t2Pn(t) dt =
4π2

κn
=⇒ |P̂ (r)n (0)| �

(2π)rρr−2n
κn

,

from which it follows that

|En(x)| �
1

κnρ2n

∑
r�3

|2πρnx|r
r!

=
1

κnρ2n

(
e|2πρnx| − |2πρnx| −

1

2
|2πρnx|2

)

� 1

κnρ2n

(2πρnx)
3

6
(1 + o(1)) = o(κ−1n ), n→∞.
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Hence,

P̂ �κn�n (x) =

(
1− 2π

2x2

κn
+ En(x)

)�κn�
→ e−2π

2x2 , n→∞,

at least at each point x. Further, by a condition of Theorem 2.5,

(1 + C1σ
2
nx
2)1/2p̂n(x) � 1,

from which it follows that

|P̂n(x)| �
1√

1 + x2/(C1κn)
.

Therefore,

‖P̂ �κn�n − e−2π
2x2‖1 �

∫ +a
−a
|P̂ �κn�n (x)− e−2π

2x2 | dx

+

∫
|x|>a

(
1 +

x2

C1κn

)−�κn�/2
dx. (6.1)

The first term tends to zero in view of the pointwise convergence, and the second
is infinitesimal uniformly with respect to n, because for any k

I :=

∫ ∞
a

(
1 +

x2

C1k

)−k/2
dx =

√
C1

√
k

k − 1

(√
k

a

)k−1
· F
(
k − 1
2
,
k

2
;
k + 1

2
;− k
a2

)
,

where

F(a, b; c; z) :=
Γ(c)

Γ(b)Γ(c − b)

∫ 1
0

tb−1(1− t)c−b−1(1− tz)−a dt

is the hypergeometric function, and hence

I =
√
C1

√
k

k − 1
Γ(c)

Γ(b)Γ(c − b)

∫ 1
0

1√
t(1− t)

(
1 +
a2

kt

)−(k−1)/2
dt

�
√
C1

2π

∫ 1
0

e−a
2/(2t)√
t(1− t)

dt =
√
C1

∫ ∞
a

e−z
2/2 dz,

which is what was to be proved.

Lemma 6.3. If a � κn, then ‖p∗an − h−1n ‖∞ � h−1n 2−�a/κn�.
Proof. We first make two general observations. Let us consider the densities ρ1
and ρ2 of some measures on the circle T, assuming that ‖ρ1 − 1‖∞ � ε. Then by
the integral mean value theorem,

‖ρ1 ∗ ρ2 − 1‖∞ = max
t

∣∣∣∣∫
T

(ρ1(u)− 1)ρ2(t− u) du
∣∣∣∣ = maxt |ρ1(ũt)− 1| � ε.



1814 A. A. Prikhod’ko

Suppose now that ‖ρ1 − 1‖∞ � ε1 and ‖ρ2 − 1‖∞ � ε2. Let δi(t) := ρi(t) − 1.
Then ρ1 ∗ ρ2 = (1 + δ1) ∗ (1 + δ2) = 1 + δ1 ∗ δ2 and

‖ρ1 ∗ ρ2 − 1‖∞ = ‖δ1 ∗ δ2‖∞ = max
t

∣∣∣∣δ1(ũt)∫
T

δ2(w) dw

∣∣∣∣ � ε1ε2.
As above, we consider the density Pn(t) = hnpn(ξn+thn). Then the assertion of the
lemma is equivalent to the inequality ‖P ∗an −1‖∞ � 2�a/κn�. We have already shown
that ‖P ∗�κn�n − 1‖∞ � 2−1. Representing a in the form a = �a/�κn���κn�+ r, we
get that

‖P ∗an − 1‖∞ � ‖P ∗�κn�n − 1‖�a/�κn��∞ � 2−�a/κn�,
which is what was to be proved.

We consider the random variables Φn(0) and Φn(A). Let

mn :=
hn

hn + ξn
.

Note that the distribution of Φn(t) coincides with the measure (1−mn)δ0+mnλn,
where λn is normalized Lebesgue measure on In. We denote the density of the
absolutely continuous component of their joint distribution by p�n(x, y;A).

Let Φ̃n(t) be the random variable taking values in In � R2+ as follows: Φ̃n(t) :=
Φn(t) if Φn(t) �= 0, and Φ̃n(t) := (l−, l+) if Φn(t) = 0 and [t − l−, t + l+] is the
connected component of Φ−1n {0} containing t. In § 2 we verified that Φ̃n(t) is a
Markov process. Let p̃�n( · , · ;A) denote the joint density of the random variables
Φ̃n(0) and Φ̃n(A). Then it is clear that p

�
n( · , · ;A) = p̃�n( · , · ;A)|In×In . Let p̃n be

the function on In � R2+ given by

p̃n(x) := h
−1
n mn, x ∈ In;

p̃n(l
±) = h−1n mnpn(l

− + l+), l± ∈ R2+.

Theorem 6.4. If A � κnhn, then

‖p̃�n(x̃, ỹ;A)− p̃n(x̃) p̃n(ỹ)‖∞ � ec−ωA/(κnhn)p̃n(x̃)p̃n(ỹ)

and, in particular,

‖p�n(x, y;A)− h−2n m2n‖∞ � h−2n ec−ωA/(κnhn),

where c = ln2 and ω = ln2.

Proof. We begin by studying the asymptotic behaviour of the density p̃�n(x̃, ỹ;A)
as n→∞ for A ∼ κnhn. Let

p(α)g (t) :=
∞∑

k=−∞

1√
2π
exp

(
−(t + k(1 + α))

2

2

)
.
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Lemma 6.5. Let A = κnhn − v, 0 � v � 2hn. Then∥∥∥∥p�n(x, y;A)− h−2n mnp(h−1n ξn)g

(
x− y
hn

)∥∥∥∥
∞
= o(h−2n ), x, y ∈ In.

Proof of Lemma 6.5. Assume that Φn(0) = x �= 0. We number the open intervals
making up the set Φ−1n (In \ {0}) from left to right, assigning the number 0 to the
interval containing the point 0. Let I(k) be the kth open interval. We also number
the ‘insertions’ — the closed intervals making up the set Φ−1n {0} — from left to
right, beginning with the first located to the right of the point t = 0. In our case
the point t = 0 itself does not belong to Φ−1n {0}. We note that the lengths sj
of the insertions are independent under the condition Φn(0) = x.
We consider the event

Sk =

{
(hn − x) + (k − 1)hn +

k∑
j=1

sj ∈ [A− hn, A]
}
= {Φn(A) �= 0 ∧A ∈ I(k)}

corresponding to the interval [0, A] containing exactly k insertions, and we note
that Sk does not depend on the σ-algebra generated by sk+1, sk+2, . . . . Hence,
the conditional joint density of the random variables s1, . . . , sk with respect to the
set Sk is the function pn(s1) · · ·pn(sk)/P(Sk). Therefore, the density of Φn(A) = y
under the condition Sk has the form

p∗kn (A− khn + x− y)
P(Sk)

.

Let
Tn, k := [A− (k + 1)hn + x, A− khn + x]

be the interval in which the argument of the convolution power p∗kn (A−khn+x−y)
varies. Thus,

p�n(x, y;A) = h
−1
n mn

∞∑
k=0

p∗kn (A− khn + x− y).

Let λn,k := k/κn.

Lemma 6.6. There exist rn →∞ and εn → 0 such that∥∥∥∥p∗kn (t)− 1√
2π λn,khn

exp

(
−(t− kξn)

2

2λ2n,kh
2
n

)∥∥∥∥(Tn, k)
∞

� εn min
t∈Tn,k

1√
2π hn

exp

(
−(t − kξn)

2

2h2n

)
if k ∈ Kn := {k : |k − κn| � rn}, where ‖ · ‖(Tn,k)∞ denotes the uniform norm on
the closed interval Tn,k. The sequences rn and εn can be chosen so that∥∥∥∥ 1√

2π λn,khn
exp

(
−(t− kξn)

2

2λ2n,kh
2
n

)
− 1√
2π hn

exp

(
−(t − kξn)

2

2h2n

)∥∥∥∥(Tn,k)
∞

� εn min
t∈Tn,k

1√
2π hn

exp

(
−(t− kξn)

2

2h2n

)
.
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Proof of Lemma 6.6. Let Pn(t) := pn(thn − ξn) and P̂n(x) :=
∫
R

e−2πixtpn(t) dt.

As earlier, we represent the function P̂n(x) in the form

P̂n(x) = 1−
2π2x2

κn
+ En(x), κn =

h2n
σ2n
,

where |En(x)| = o(κ−1n ). Then for any x ∈ R

P̂ kn (x) ∼ e−2π
2λ2n,kx

2

, n→∞, λn,k → 1.

Repeating the argument in the proof of Lemma 6.2, we establish the pointwise
convergence

p∗kn (t)→
1√

2π λn,khn
exp

(
−(t − kξn)

2

2λ2n,kh
2
n

)
,

and hence the uniform convergence on the intervals [(κn − rn)hn, (κn + rn)hn] for
some slowly increasing sequence rn, and this is what was to be proved.
Since rn →∞, we have P{k ∈ Kn} → 1 as n→∞. We represent p�n(x, y;A) in

the form I0 + I1, where

I0 = h
−1
n mn

∑
k∈Kn

p∗kn (A − khn + x− y),

and I1 is the sum over the complement of the set Kn. Let us estimate I1. It is not
hard to show that

‖p∗kn ‖∞ = O(σ−1n κ−1/2n ) = O(h−1n ), ‖(p∗kn )′‖∞ = O(σ−2κ−1n ) = O(h−2n ),

from which it follows that p∗kn (A− khn + x− y)/P(Sk) = O(h−1n ). Hence,

I1 = O(h
−2
n (1− P{k ∈ K})) = o(h−2n ).

Then∥∥∥∥p�n(x, y;A)− h−2n mnp(h−1n ξn)g

(
x− y
hn

)∥∥∥∥
∞

�
∥∥∥∥I0 − h−2n mnp(h−1n ξn)g

(
x− y
hn

)∥∥∥∥
∞
+ I1

� h−1n
∑
k∈Kn

∥∥∥∥p∗kn (t)− 1√
2π λn,khn

exp

(
−(t − kξn)

2

2λ2n,kh
2
n

)∥∥∥∥
∞

+ h−1n
∑
k∈Kn

∥∥∥∥ 1√
2π λn,khn

exp

(
−(t − kξn)

2

2λ2n,kh
2
n

)

− 1√
2π hn

exp

(
−(t − kξn)

2

2h2n

)∥∥∥∥
∞
+ I1 � const · εnh−2n + I1 = o(h−2n ),

and Lemma 6.5 is proved.
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Let p̃�n(x̃, ỹ;A) = p̃n(x̃)p̃n(ỹ)(1 + δ
�
n(x̃, ỹ;A)). We assume first that A = κnhn

and we show that

‖δ�n( · , · ;A)‖∞ �
1

2

for sufficiently large n. Lemma 6.5 asserts that∥∥∥∥δ�(x, y, ;A)− (p(h−1n ξn)g

(
x− y
hn

)
− 1
)∥∥∥∥
∞
= o(1).

It is easy to verify that ‖p(0)g ((x − y)/hn) − 1‖∞ < 1/2 and, moreover, that for
sufficiently small α ∥∥∥∥ ∂∂αp(α)g (t)

∥∥∥∥
∞
� const,

where the constant does not depend on α. Hence, since h−1n ξn → 0, we have
‖δ�n( · , · ;A)|In×In‖∞ � 1/2 starting with some n. Furthermore,

p̃�n(x, l
±;A) = p̃�n(x, hn − l−;A− hn)pn(l− + l+) =

p̃�n(x, hn − l−;A− hn)
h−1n mn

p̃n(l
±),

from which it follows that

‖δ�n(x, l±;A)‖∞ � ‖δ�n(x, hn − l−;A− hn)‖∞ �
1

2
.

The estimates of δ�n(l
±, x;A) and δ�n(l

±
1 , l

±
2 ;A) for A = κnhn are obtained similarly.

Using the Chapman–Kolmogorov formula, we compute p̃�n(x̃, ỹ;A1 + A2):

p̃�n(x̃, ỹ;A1 +A2) = p̃n(x̃)

∫
In�R2+

p̃�n(x̃, z̃;A1)p̃
�
n(z̃, ty;A2)

p̃n(x̃)p̃n(z̃)
dz̃.

Note that ∫
In�R2+

δ�n(x̃, z̃;A1)p̃n(z̃) dz̃ =

∫
In�R2+

p�n(x̃, z̃;A1)

p̃n(x̃)
dz̃ − 1 = 0,

since by definition ∫
In�R2+

p̃�n(x̃, z̃;A1) dz̃ = p̃n(x̃).

We have

p̃n(x̃)p̃n(ỹ)(1 + δ
�
n(x̃, ỹ;A1 +A2))

p̃n(x̃)

=

∫
In�R2+

p̃n(x̃)p̃n(z̃)
2p̃n(ỹ)(1 + δ

�
n(x̃, z̃;A1))(1 + δ

�
n(z̃, ỹ;A2))

p̃n(x̃) p̃n(z̃)
dz̃,
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from which we see that

1 + δ�n(x̃, ỹ;A1 +A2) = 1 +

∫
In�R2+

δ�n(x̃, z̃;A1)p̃n(z̃) dz̃

+

∫
In�R2+

δ�n(z̃, ỹ;A2)p̃n(z̃) dz̃ +

∫
In�R2+

δ�n(x̃, z̃;A1)δ
�
n(z̃, ỹ;A2) dz̃,

and finally,

δ�n(x̃, ỹ;A1 +A2) =

∫
In�R2+

δ�n(x̃, z̃;A1)δ
�
n(z̃, ỹ;A2) dz̃.

Thus,

‖δ�n(x̃, ỹ;A)‖∞ � 21−�A/(κnhn)�,
‖p̃�n(x̃, ỹ;A)− p̃n(x̃) p̃n(ỹ)‖∞ � ec−ωA/(κnhn)p̃n(x̃) p̃n(ỹ),

where c = 2 ln 2, ω = ln 2, and A � κnhn. Theorem 6.4 is proved.

Let i ∈ B(Ĩn) and A ∈ [0, hn+1]. We consider the random process

ηi(t) :=

{
1 if θn(t, A) ∈ i and Φn(t),Φn(A + t) �= 0,
0 otherwise,

θn(t, A) := Φn(A+ t)−Φn(t), 0 � t � hn+1 − A.

The expectation of the random variable ηi(t) can be expressed by the formula

ηi =

∫
Dn(∆̃n)

p�n(x, y;A) dx dy,

where Dn(B) = {(x, y) ∈ In × In : y − x ∈ B} for B ⊆ Ĩn.
We show that the random process ηi is ψ-mixing, where ψ is an exponentially

decreasing function. Let
t′′ � t′ + A+ l′.

We introduce the following notation. Let x̃0, x̃1, x̃2, x̃3 and ỹ0, ỹ1, ỹ2, ỹ3 be the

values of the function Φ̃n at the points t
′ +A, t′ + A+ l′, t′ + l′, t′ and t′′ + l′′, t′′,

t′′ + A, t′′ +A′′ + l′′, respectively. Then

P(w′ ∧ w′′) =
∫
W ′(x̃)W ′′(ỹ)P (x̃ | x̃1)P (ỹ | ỹ1)P1(x̃1, ỹ1) dx̃ dỹ,

P(w′) =

∫
W ′(x̃)P (x̃ | x̃1)p̃n(x̃1) dx̃, P(w′′) =

∫
W ′′(ỹ)P (ỹ | ỹ1)p̃n(ỹ1) dỹ,

where P (x̃1, ỹ1) is the density of the joint distribution of x̃1 and ỹ1:

P (x̃1, ỹ1) = p̃
�
n(x̃1, ỹ1; t

′′ − (t′ + l′ + A)).
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We recall that

‖P (x̃1, ỹ1) − p̃n(x̃1)p̃n(ỹ1)‖∞ � p̃n(x̃1)p̃n(ỹ1)ec−ω(t
′′−(t′+l′+A))/(κnhn)

if t′′ − (t′ + l′ +A) � κnhn. Hence,

|P(w′ ∧ w′′)− P(w′)P(w′′)| � P(w′)P(w′′)ec−ω(t′′−(t′+l′+A))/(κnhn), (6.2)

and therefore the process ηi is ψ-mixing with the function

ψ(t) =

{
ec−ω(t−A)/(κnhn) if t � A+ κnhn,
+∞ otherwise.

We assume now that

t′ < t′ + l′ < t′′ < t′′ + l′′ < t′ + A < t′ + A+ l′ < t′′ + A < t′′ +A+ l′′,

0 � t′ < t′′ + l′′ � A
2
.

The density of the joint distribution of x0 and y0 will be denoted by

P0(x̃0, ỹ0) = p̃
�
n(ỹ0, x̃0; t

′ + A− (t′′ + l′′)).

We consider the conditional densities

P ′0(x̃1 | x̃0), P ′′0 (ỹ1 | ỹ0), P ′1(x̃2 | ỹ1), P ′′1 (ỹ2 | x̃1), P ′2(x̃3 | x̃2), P ′′2 (ỹ3 | ỹ2).

Let W ′(x̃) = P(w′ | x̃) and W ′′(ỹ) = P(w′′ | y). Since Φ̃n is a Markov process,

P(w′ ∧ w′′) =
∫
P0P

′
0P
′′
0 P

′
1P
′′
1 P

′
2P
′′
2W

′(x̃)W ′′(ỹ) dx̃ dỹ,

P(w′) =

∫
P0P

′
0P
′′
0 P

′
1P
′
2W

′(x̃) dx̃ dỹ,

P(w′′) =

∫
P0P

′
0P
′′
0 P

′′
1 P

′′
2W

′′(ỹ) dx̃ dỹ.

To make the expressions less cumbersome, we omit the arguments of P0, P
′
0, P

′′
0 , . . . .

Let

I1 =

∫
p̃n(x̃0)p̃n(ỹ0)P

′
0P
′′
0 P

′
1P
′′
1 P

′
2P
′′
2W

′(x̃)W ′′(ỹ) dx̃ dỹ,

I′1 =

∫
p̃n(x̃0)p̃n(ỹ0)P

′
0P
′′
0 P

′
1P
′
2W

′(x̃) dx̃ dỹ,

I′′1 =

∫
p̃n(x̃0)p̃n(ỹ0)P

′
0P
′′
0 P

′′
1 P

′′
2W

′′(ỹ) dx̃ dỹ
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and

I2 =

∫
p̃n(x̃0)p̃n(ỹ0)p̃n(x̃1)p̃n(ỹ1)P

′
0P
′′
0 P

′
2P
′′
2W

′(x̃)W ′′(ỹ) dx̃ dỹ,

I′2 =

∫
p̃n(x̃0)p̃n(ỹ0)p̃n(x̃1)p̃n(ỹ1)P

′
0P
′′
0 P

′
2W

′(x̃) dx̃ dỹ,

I′′2 =

∫
p̃n(x̃0)p̃n(ỹ0)p̃n(x̃1)p̃n(ỹ1)P

′
0P
′′
0 P

′′
2W

′′(ỹ) dx̃ dỹ.

We first use the fact that the joint distribution of x̃ and ỹ is almost uniform if the
interval between the corresponding moments of time is sufficiently large:

|P(w′ ∧ w′′) − I1| � I1E0, |P(w′) − I′1| � I′1E0, |P(w′′)− I′′1 | � I′′1E0,

where E0 := e
c−ω(t′+A−(t′′+l′′))/(κnhn) and t′ + A − (t′′ + l′′) � κnhn. Noting that

I2 = I
′
2I
′′
2 , we get that

|P(w′ ∧ w′′) − P(w′)P(w′′)| � (I1 + P(w′)I′′1 + I′′2I′1)E0 + (I2 + P(w′)I′′2 + I′′2I′2)E1,

where E1 := e
c−ω(t′′−(t′+l′))/(κnhn) and t′′ − (t′ + l′) � κnhn. From this it is not

hard to obtain the relation

|P(w′ ∧ w′′) − P(w′)P(w′′)| � (C0E0 +C1E1)P(w′)P(w′′).

In particular, if κnhn � |(t′′ + l′′)− t′| � A/2, then

|P(w′ ∧ w′′) − P(w′)P(w′′)| � (C0 + C1)E0P(w′)P(w′′)
= P(w′)P(w′′)ec2−ω(t

′′−(t′+l′))/(κnhn). (6.3)

We need this estimate in § 7.

§ 7. Proof of the mixing property
In this section we prove Theorem 2.5. Namely, we establish that the flow Tω

constructed is P-almost surely mixing. To this end it suffices to show that for any n0
and any functions f, g ∈ C1(In0) with the properties Θf = Θg = f(0) = g(0) = 0
we have

R(A) = Rf,g(A) := 〈T̂Af�, g�〉 → 0, A→∞

with probability 1, where f� and g� are the functions on X corresponding to f
and g:

f�(x) = f(ϕn(x)), g�(x) = g(ϕn(x)).

Indeed, we can choose a countable set F of functions of such form for which finite
linear combinations of them are dense in the space L2(X, µ). If Rf,g(A)→ 0 for all
pairs of functions f, g ∈ F, then the flow is mixing; and mixing takes place on
all pairs f , g with probability 1, because the set F is countable.
Accordingly, let us fix two functions f, g ∈ C1(In0) such that

‖f‖∞, ‖g‖∞ � 1, ‖f ′‖∞, ‖g′‖∞ � b <∞, Θf = Θg = f(0) = g(0) = 0.
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Since the functions f� and g� are A(ϕn)-measurable, they can be regarded as func-
tions on the space (X,A(ϕn), µ), which is isomorphic in a natural way to the space
(In,B(In), µn). More precisely, let

f(n)(t) = f(ϕn,n0(t)),

g(n)(t) = g(ϕn,n0(t)), t ∈ In.

Let I◦n := (0, hn) and J
◦
n =

←
ϕ−1n I

◦
n. The set J

◦
n is the union of the intervals of the

form ln,k + I
◦
n, and the set S

AJ◦n ∩ J◦n is a union of intervals which we denote by
I◦n,j = un,j + I

◦
n(Aj), where

I◦n(A) := S
A(0, hn) ∩ (0, hn) =

{
(0, hn −A), 0 � A � hn,
(A, hn), −hn � A � 0,

A ∈ Ĩn+1.

Let

R̃n(A) :=

∫
I◦n(A)

f(n)(t+ A)g(n)(t) dt

=


1

hn − |A|

∫ hn−A
0

f(n)(t +A)g(n)(t) dt, 0 � t � hn,

1

hn − |A|

∫ hn
A

f(n)(t +A)g(n)(t) dt, −hn � t � 0.

The function R̃n is defined on the set Ĩn := [−hn, hn], which it is sometimes con-
venient to identify with the circle R/2hnZ. We remark that if A  hn, then

R(A) ≈ R̃n(A). We define a family of measures ν̃n( · ,A) on Ĩn as follows: for a
Borel subset B of the closed interval Ĩn let

ν̃n(B,A) :=
�

hn+1 − |A|
,

where � is the sum of the lengths of the intervals I◦n,j such that Aj ∈ B. The
discrete measure ν̃n is not normalized, but ν̃n(Ĩn, A) � 2mn − 1 → 1. From our
assumptions about f and g it follows that

R̃n+1(A) =

∫
Ĩn

R̃n(t) ν̃n(dt, A). (7.1)

Indeed, since f(0) = g(0) = 0, we have

R̃n+1(A) =
1

hn+1 − |Aj|

∫ hn+1−A
0

f(n)(t +A)g(n)(t) dt

=
1

hn+1 − |Aj|
∑
j

∫
I◦n,j

f(n)(t+ A)g(n)(t) dt

=
1

hn+1 − |Aj|
∑
j

∫
I◦n(Aj)

f(t +Aj)g(t) dt

=
∑
j

λ(I◦n(Aj))

hn+1 − |Aj|
R̃n(Aj) =

∫
Ĩn

R̃n(t) ν̃n(dt, A)
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for A > 0. Let us consider the measures

ν̃•n(B,A) := S
−Aν̃n(B,A) = ν̃(S

−AB,A).

We note that when A varies within the limits of some bounded interval, the mea-
sures ν̃•n( · ,A) are concentrated on a finite set of points. We give a more precise
description of the behaviour of the measure ν̃•n. It has the representation

ν̃•n( · ,A) =
∑
z∈Z
a( · ,A; az, Az),

where a( · ,A; az, Az) is an ‘atom’, that is, a measure of the form p(A;Az)δaz ,
Az ∈ Ĩn+1, az ∈ Ĩn, with

p(A;Az) =
hn

hn+1 − |A|

{
1− h−1n |A−Az | if |A−Az| � hn,
0 otherwise,

and Z is some finite set. Each atom corresponds to a single interval I◦n,j. It is not
hard to verify the following property of the function p(A;Az):

p(A;Az) � p(ahn;Az) + p((a + 1)hn;Az) if A ∈ [ahn, (a+ 1)hn].

This gives us that

a( · ,A; a, Az) � a( · ,ahn; a, Az) + a( · ,(a+ 1)hn; a, Az),

and hence
ν̃•n( · ,A) � ν̃•n( · ,ahn) + ν̃•n( · ,(a + 1)hn).

Let
An = (2δnhn+1, 2δn+1hn+2], where δn = q

−χ
n  1.

We fix A0 ∈ An and note that |R̃n+2(A0) − R(A0)| � 8δn+1 → 0. As before, we
assign to A0 the intersection S

A0J◦n+1 ∩ J◦n+1, which is the union of the intervals
I◦n+1,j = un+1,j + I

◦
n+1(Aj). Let us show that the fraction of those Aj that belong

to the set

∆̃n+1 := [−hn+1,−(1− δn)hn+1] ∪ [−δnhn+1, δnhn+1] ∪ [(1− δn)hn+1, hn+1],

is almost surely small (tends to zero). More precisely, we estimate the probability
P0 of the following event:

ν̃n+1(∆̃n+1, A0) � 8vn+1 + 16q−1n+1 ∀A0 ∈ An, (7.2)

where vn+1 � δnhn+1‖pn+1‖∞ is a sequence that tends to zero sufficiently slowly.
We consider the sets i = i(k) of the form

k · 2δnhn+1+([−hn+1,−(1− δn)hn+1]∪ [−δnhn+1, δnhn+1]∪ [(1− δn)hn+1, hn+1]),
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which form a covering of the circle Ĩn+1, where δn is the minimal positive number

� δn such that δ
−1
n ∈ N. The condition (7.2) holds if:

ahn+1 ∈ An =⇒ ν̃•n+1(i, ahn+1) � 2vn+1 + 4q−1n+1 ∀ a ∈ N, ∀ i. (7.3)

Indeed, suppose to begin with that A0 � hn+1, namely, suppose that ahn+1 �
A0 < (a + 1)hn+1. Then since any shift of ∆̃n+1 is covered by two sets i

′ and i′′,
we have

ν̃•n+1(S
−A0∆̃n+1, A0) � ν̃•n+1(i′, A0) + ν̃•n+1(i′′, A0)
� ν̃•n+1(i′, ahn+1) + ν̃•n+1(i′, (a+ 1)hn+1)
+ ν̃•n+1(i

′′, ahn+1) + ν̃
•
n+1(i

′′, (a+ 1)hn+1)

� 8vn+1 + 16q−1n+1,

where n ∈ N. Suppose now that 2δnhn+1 < A0 < hn+1. In this case it suffices to
use the same arguments, noting only that for the given A0 the intervals i

′ and i′′

are not equal to ∆̃n+1, and the measure ν̃
•
n+1( · ,0) is concentrated at the point 0.

Accordingly, we fix a and an interval i, let A = ahn+1, and consider the random
process

ηi(t) :=

{
1 if θn+1(t, A) ∈ i and Φn+1(t),Φn+1(t +A) �= 0,
0 otherwise,

θn+1(t, A) := Φn+1(A+ t)−Φn+1(t), 0 � t � hn+2 − A.

It is obvious that

ν̃•n+1(i, A) = ν̃n+1(i, A) =
1

hn+2 −A

∫ hn+2−A
0

ηi(t) dt+ En+1,

where
|En+1| � 4q−1n−1.

The expectation of the random variable ηi(t) can be expressed by the formula

ηi =

∫
Dn+1(∆̃n+1)

p�n+1(x, y;A) dx dy,

Dn+1(B) = {(x, y) ∈ In+1 × In+1 : y − x ∈ B}, B ⊆ Ĩn+1.

In § 6 we proved that

‖p�n+1( · ;A)−m2n+1h−2n+1‖∞ � ‖p�n+1( · ; hn+1) −m2n+1h−2n+1‖∞;

hence

ηi � m2n+1λ̃n+1(i) + ‖p�n+1( · ; hn+1)−m2n+1h−2n+1‖∞ · 4δnh2n
� 2m2n+1λ̃n+1(i) + ‖p�n+1( · ; hn+1)‖∞ · 4δnh2n
� 2m2n · 4δn + ‖mn+1h−1n+1pn+1‖∞ · 4δnh2n
� 8δn + 4‖δnhn+1pn+1‖∞ → 0.

The sequence vn can be chosen so that vn+1 � ηi.
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It has been proved that the process ηi is ψ-mixing with the function

ψ(t) =

{
ec2−ω(t−A)/(κn+1hn+1), t � t0 := A+ κn+1hn+1,
∞ otherwise.

We consider the set I := {t : ηi(t) = 1}. Let us apply Theorem 5.11 to the
process ηi, setting ω = ω/(κn+1hn+1), T = hn+2 − A, c = c2 + ωA/(κn+1hn+1),
h = hn+1, ρ = 4, and ε = vn+1. We verify the conditions of the theorem. Obviously,

#(∂I ∩ [0, t]) � 4t

hn+1
.

Further,

ωτ =
ω

κn+1hn+1

vn+1hn+1

16
=
ωvn+1

16κn+1
� c;

t0

τ
=
A

τ
+
16κn+1
vn+1

� ln(T/τ) + c2
vn+1ω/(16κn+1)

+
A

τ
,

where τ = εh/(4ρ) = vn+1hn+1/16, since it can be assumed without loss of gener-
ality that T > eωτ . The remaining conditions are obvious. We have

P{ν̃n+1(i, A) > 2vn+1 + 4q−1n+1} � P
{

1

hn+2 −A

∫ hn+2−A
0

ηi(t) dt− ηi > vn+1
}

� exp
(
−c3v2n+1

ω(hn+2 −A)
κn+1hn+1

(
lnhn+2 − ln(vn+1hn+1)16 + 2c2 + 2

ωA
kn+1hn+1

))

� exp
(
−c3v2n+1

ω(qn+1 − a)
κn+1(ln qn+1 − lnvn+1/16) + 2c2 + 2ωa

)
.

By a condition of the theorem, κn+1 = o(q
1−χ−ε
n+1 ). Moreover, a � δn+1qn+1 = q1−χn+1.

Hence,

P{ν̃n+1(i, A) > 2vn+1 + 4q−1n+1} � exp
(
−c3v2n+1

ωqχn+1
κ(qn+1)

)
,

where κ(qn+1) = o(q
ε
n+1) for any ε > 0. Since this quantity decreases exponentially

(with respect to qn) and since the total number of pairs (a, i) is bounded by a
polynomial in qn, the condition (7.2) holds almost surely starting with some n.
We assume that A0 � A00. It was shown above that for any such A0 the cor-

relation function R̃n+2 is determined mainly by the values of R̃n+1 at the points Aj
with the property δnhn+1 � |A| � (1− δn)hn+1, which are almost surely a majority
of points. Our immediate goal is to prove that with probability 1

sup
Ĩn+1\∆̃n+1

|R̃n+1(A)| → 1, n→∞.

To see this, we proceed as follows. We choose a sequence sn tending to zero and

show that |R̃n+1(A)| → 0 almost surely for all points of the form A = jsn, j ∈ Z.
Then by the condition ‖f ′‖∞ � b we have∣∣∣∣R̃n+1(A) − R̃n+1(⌊ Asn

⌋
sn

)∣∣∣∣ � (1 + o(1))b · sn,
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which implies that

sup
Ĩn+1\∆̃n+1

|R̃n+1(A)| � sup
j
|R̃n+1(jsn)|+ (1 + o(1))b · sn → 0.

The proof of the fact that the function R̃n+1 almost surely converges uniformly
to zero at the points jsn (as n → ∞) is based on the following observation. The
number of points jsn does not exceed hn+1/sn, and this quantity grows no more

rapidly than a polynomial in qn, while the probability that |R̃n+1(jsn)| > 4τn
decreases exponentially with respect to qn, where τn is a sequence tending slowly
to zero.
Accordingly, we fix some A = jsn ∈ Ĩn+1 \ ∆̃n+1. It can be assumed without

loss of generality that A > 0. Let us recall that

R̃n+1(A) =

∫
Ĩn

R̃n(t) ν̃n(dt, A)

and ‖R̃n‖∞ < 1. Further,∫
Ĩn

R̃n(t) λ̃n(dt) =

∫ hn
−hn

hn − |t|
h2n

R̃n(t) dt

=

∫ hn
−hn

hn − |t|
h2n

dt

(
1

hn − |t|

∫
I◦n(t)

f(n)(u + t)g(n)(u) du

)
=
1

h2n

∫ hn
−hn
g(n)(u) du

∫ hn
−hn
f(n)(u+ t) dt = 0.

We partition the half-open interval [−1, 1) of possible values of the function R̃n
into half-open intervals i of length τn (it is assumed that τ

−1
n ∈ N). We would like

to consider the set Zi = R̃
−1
n (i) and estimate the deviation |ν̃n(Zi, A) − λ̃n(Zi)|.

However, the so-defined sets Zi may have a fairly bad structure. Therefore, we
define them in another way. Namely, let i(t) be the half-open interval in which

R̃n(t) falls. Let Zi(0) contain 0 by definition. Suppose that in moving forward the

point R̃n(t) leaves the set i(0) + [−τn/2, τn/2] at the time t1, that is,

t1 := inf{t > 0 : R̃n(t) /∈ i(0)}.

At the time t1 the point R̃n(t1) is in the middle of the interval i(t1) next to i(0).
It will be assumed that Zi(t1) contains some small interval (t1, t1 + ε) on which

R̃n(t) ∈ i(t1). Continuing this procedure, we find the time t2 of first exit from the
τn/2-neighbourhood of the interval i(t1). Then (t1, t2] is a connected component
of the set Zi(t1), and the set Zi(t2) contains a small interval (t2, t2 + ε), and so on.

As a result, we get a partition of Ĩn into sets Zi satisfying the following conditions:

1) |R̃n(t) − c(i)| � τn for any t ∈ Zi, where c(i) is the centre of i;
2) the length of any connected component of Zi is at least τn/b.
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Suppose that

|ν̃n(Zi, A)−m2nλ̃n(Zi)| � τ2n for all i (7.4)

for the given realization of the flow. Then, letting z(t) be the centre of the half-open
interval i with t ∈ Zi, we get that

|R̃n+1(A)| �
∫
Ĩn

|R̃n(t)− z(t)| ν̃n(dt, A) +
∑
i

c(i) · |ν̃n(Zi, A)−m2nλ̃n(Zi)|

+

∫
Ĩn

|R̃n(t)− z(t)|m2n λ̃n(dt) � τn + τ2n ·
2

τn
+ τn = 4τn.

Here we have used the fact that

∫
Ĩn

R̃n(t) λ̃n(dt) = 0. This estimate is what we

need. It remains to estimate the probability of realizing the condition (7.4). We
consider the random process

ηi(t) =

{
1 if θn(t, A) ∈ Zi and Φn(t),Φn(t+A) �= 0,
0 otherwise

and note that

ν̃n(Zi, A) = Si + En, Si :=
1

hn+1 − A

∫ hn+1−A
0

ηi(t) dt,

where |En| � 4q−1n . Then the requirement (7.4) can be replaced by the condition

|Si −m2nλ̃n(Zi)| �
3

4
τ2n for all i, (7.5)

since it can be assumed without loss of generality that 16q−1n � τ2. As above, we
have

|ηi −mnλ̃n(Zi)| = |ηi −mn(λn × λn)(Dn+1(Zi))| � ec−ωA/(κnhn).

But by the condition (3) of Theorem 2.5, A � δnhn+1 = q1−χn hn � qεnκnhn. There-
fore, A/(κnhn) � qεn, and by properly choosing τn we can assume that

|ηi −mnλ̃n(Zi)| �
1

4
τ2n.

The condition (7.5) (and hence also (7.4)) will hold if we require that

|Si − ηi| =
∣∣∣∣ 1

hn+1 −A

∫ hn+1−A
0

ηi(t) dt

∣∣∣∣ � 12τ2n. (7.6)

Let us estimate the probability (7.6). Two cases will be considered for the
quantity a = A/hn.
Case 1. δnqn � a <

√
κnqn . We use ψ-mixing of the process ηi, where ψ(t) =

ec1−ω(t−A)/(κnhn). We apply Theorem 5.11 to ηi, considering the following values of
the parameters: ω = ω/(κnhn), c = c1 + A/(κnhn), h = hn, ρ = 4, and ε = τ

2
n/2.
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Then

P

{
|ν̃n(Zi, A)− ηi| >

1

2
τ2n

}
� exp

(
−c1
τ4n
4

ω(qn − a)
κn(ln qn − ln τn/32) + 2c1 + 2ωa

)
� exp

(
− qn − a
κ1(qn) · a

)
,

where κ1(qn) = o(q
δ
n) for any δ > 0.

Case 2. a � √κnqn . It can be assumed without loss of generality that a  qn
and a | qn. We partition [0, hn+1−A] into intervals of length A/2 and we fix one of
them, [t0, t0+A/2]. On this interval the process ηi behaves like a ψ-mixing process
with the function ψ(t) = ec2−ωt/(κnhn). We let ω = ω/(κnhn), c = c2, h = hn,
ρ = 4, and ε = τ2n/2, and we again use Theorem 5.11, obtaining

P

{
|ν̃n(Zi, A)− ηi| >

1

2
τ2n

}
� 2qn
a
exp

(
−c2
τ4n
4

ωa

κn(lna − ln τn/32) + 2c2

)
� 2qn
a
exp

(
− a

κ2(a) · κn

)
,

where κ2(qn) = o(q
γ
n) for any γ > 0.

Finally, we consider the following two situations:

(1) δnqn �
√
κnqn ;

(2) δnqn >
√
κnqn .

For (1) it is necessary to consider both case 1 and case 2, and hence the proba-
bility has the following bound:

P

{
|ν̃n(Zi, A)− ηi| >

1

2
τ2n

}
� exp

(
−
√
κnqn

κ3(qn) · κn

)
� exp

(
−q
(1−(1−χ−ε))/2
n

κ3(qn)

)
= exp

(
−q
(χ+ε)/2
n

κ3(qn)

)
(where κ3(qn) = o(q

γ
n) for any γ > 0), which is exponentially small.

In the situation (2) we need consider only case 2, and the corresponding estimate
has the form

P

{
|ν̃n(Zi, A)− ηi| >

1

2
τ2n

}
� exp

(
− δnqn
κ4(qn) · κn

)
� exp

(
−q
1−χ−(1−χ−ε)
n

κ4(qn)

)
= exp

(
− qεn
κ4(qn)

)
(where κ4(qn) = o(q

γ
n) for any γ > 0), consequently, the desired probability

decreases exponentially rapidly also in this case.
To conclude the proof we need an argument analogous to the Borel–Cantelli

lemma. Namely, we estimated the probability that the condition ‖R̃n+1‖∞ � εn
fails, where εn is some sequence going to zero, under the condition that realizations

of the processes Φ1, . . . ,Φn are known. Moreover, the family of events {‖R̃n+1‖∞ >
εn} is measurable with respect to the σ-algebra generated by Φ1, . . . ,Φn. Finally,
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the series made up of the bounds of the probabilities of these events converges
(even at a rate exponential with respect to qn). Therefore, with probability 1 we

have ‖R̃n+1‖∞ � εn, and hence the estimate R(A0) ≈ R̃n+2(A0) of the correlation
function, starting with some n0.
The proof of the theorem is complete.
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