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DISJOINTNESS OF THE CONVOLUTIONS

FOR CHACON’S AUTOMORPHISM

BY

A. A. PR IKHOD ’KO AND V. V. RYZH IKOV (MOSCOW)

Abstract. The purpose of this paper is to show that if σ is the maximal spectral
type of Chacon’s transformation, then for any d 6= d′ we have σ∗d ⊥ σ∗d

′

. First, we
establish the disjointness of convolutions of the maximal spectral type for the class of
dynamical systems that satisfy a certain algebraic condition. Then we show that Chacon’s
automorphism belongs to this class.

Let us consider a measure preserving invertible transformation T of the
Lebesgue space (X,µ). We associate with T the unitary operator T̂ : f(x) 7→

f(Tx) on L2(X,µ). Let σ be the maximal spectral type of T̂ restricted to
the subspace H of functions with zero mean.

It is an important problem of spectral theory of dynamical systems to in-
vestigate properties of convolutions of the maximal spectral type σ (see [2],
[3] and [6]–[8]). This question originates from Kolmogorov’s well-known
problem concerning the group property of the spectrum. It was discovered
that for some automorphisms the spectral type σ and the convolution σ ∗ σ
are mutually singular (see [5]–[8]). An example is the so-called κ-mixing

automorphism, i.e. a transformation T with the following property: there
exists a subsequence kj such that T̂ kj converges weakly to the operator
κΘ + (1− κ)I, where Θ is the orthoprojection onto the subspace of con-
stants and I is the identity operator. This property is known to be generic
for measure preserving transformations (see [8]).

Another generic property of automorphisms is the existence of a subse-

quence kj such that T̂ kj → 1
2I+

1
2 T̂ . This property implies σ ⊥ σ ∗ σ as

well. (This fact was established first by Lemańczyk. Parreau extended this
observation by showing that σ ⊥ σ∗d for all d. Ryzhikov also obtained the
same result and used it for solving Rokhlin’s problem on homogeneous spec-
trum (see [2]). Ageev deduced this statement as a consequence of his results
concerning spectral multiplicity of T × T .)
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It is known that Chacon’s well-known automorphism has the property
mentioned above. The following question (raised by del Junco and Lemań-
czyk [3]) has remained open: are all the d-fold convolutions σ∗d of the max-
imal spectral type σ pairwise singular for Chacon’s map? In this paper we
show that the answer is affirmative. Namely, we establish (Section 2) that
the closure of the powers of Chacon’s automorphism contains a sequence of

symmetric square polynomials which tends to the operator
(
1
2I+

1
2 T̂

)2
, and

we show that this condition implies the disjointness of the convolutions.

1. Disjointness of convolutions. Let Cl(T ) be the set of all operators
cK, where c is a positive number and K belongs to the weak closure of the
powers of the operator T̂ .

Theorem 1.1. Let σ be the maximal spectral type of a weakly mixing

automorphism T . Suppose that for some sequence an of distinct positive

numbers the set Cl(T ) contains the polynomials

Qn(T̂ ) = I+ anT̂ + T̂ 2, where I is the identity operator.

Then all the convolutions σ∗d are mutually singular.

P r o o f. Let us fix integers d′ > d > 1 and show that σ∗d ⊥ σ∗d′

. Suppose
that an operator J : H⊗d → H⊗d′

satisfies

J T̂ ⊗ . . .⊗ T̂︸ ︷︷ ︸
d

= T̂ ⊗ . . .⊗ T̂︸ ︷︷ ︸
d′

J,

where H is the subspace in L2(X,µ) of functions with zero mean. It is
enough to prove that J = 0. Indeed, it is evident that σ∗d is the spectral
type of the operator T̂⊗d restricted to the subspace H⊗d. Suppose that
σ∗d 6⊥ σ∗d′

. Then there are two cyclic subspaces C1 ⊂ H⊗d and C2 ⊂ H⊗d′

with the same spectral measure. Let J be an operator establishing a unitary
equivalence between the restriction of T̂⊗d to C1 and the restriction of T̂⊗d′

to C2 which is zero on C⊥
1 . Then, evidently, JT⊗d = T⊗d′

J and J 6= 0.
For any K ∈ Cl(T ) we have JK⊗d = γ(K)K⊗d′

J , where γ(K) is a

positive constant that depends on K. In particular, for K = Qn(T̂ ),

J(I+ anT̂ + T̂ 2)⊗d = γn (I+ anT̂ + T̂ 2)⊗d′

J, γn =
1

(2 + an)d
′−d

.

The left part of this equation can be represented in the form J
∑d

i=0 a
i
nW

(d)
i ,

where
W

(d)
i =

∑

(r1,...,rd)
rk∈{−1,0,1}, |r1|+...+|rd|=d−i

T̂ 1+r1 ⊗ . . .⊗ T̂ 1+rd .

Since the dimension of the space spaned by W
(d)
k is not greater than d+ 1,



CHACON’S AUTOMORPHISM 69

there exists a non-trivial sequence of reals ci such that

J

d+2∑

n=1

cnQn(T̂ )
⊗d = 0.

This implies that
d+2∑

n=1

γncnQn(T̂ )
⊗d′

J = 0.

We will show that the operators W
(d′)
i J are linearly independent. It will

follow that the operators Qn(T̂ )
⊗d′

J , 1 ≤ n ≤ k, are linearly independent
if and only if k ≤ d′ + 1. (This follows directly from the representation

Qn(T̂ )
⊗d′

=
∑d′

i=0 a
i
nW

(d′)
i and the fact that the an are distinct.) Thus, the

linear combination above cannot be zero because d+ 2 = (d+ 1) + 1 ≤ d′ + 1
(recall that d < d′). This contradiction completes the proof.

The only thing we must show is that the W
(d′)
i J are linearly indepen-

dent. Indeed, any non-trivial linear combination
∑

i ciW
(d′)
i J has the form

V (T̂ , . . . , T̂ )J = 0, where V is some non-trivial polynomial of d′ variables.
If J 6= 0, then there exists a function f such that Jf 6= 0. Let us pass to the
spectral representation of T̂ . Namely, set

U : L2(T, σ) → L2(T, σ) : φ(z) 7→ zφ(z)

and let Φ : L2(X,µ) → L2(T, σ) be the unitary operator that conjugates T̂

and U : ΦT̂ = UΦ.
Then for the function F = Φ⊗d′

Jf on Td′

we have

0 = Φ⊗d′

V (T̂ , . . . , T̂ )(Jf) = V (z1, . . . , zd′)F.

Thus, F is supported on the manifold N = {V (z1, . . . , zd′) = 0}. It is not
hard to prove that, since V is a polynomial, we have σ⊗d′

(N ) = 0. Indeed,

suppose, for simplicity, that d′ = 2. Then there are finitely many points z
(j)
1

such that N ∩ ({z
(j)
1 } × T) is not finite. It is known that a transformation

is weakly mixing iff it has continuous spectrum. Hence, (σ × σ)(N ) = 0,

because T̂ is weakly mixing. Thus, Jf = 0 and J must be zero; but J 6= 0,

and we have proved that the W
(d′)
i are linearly independent.

2. Chacon’s automorphism. Let h1 = 1 and hj+1 = 3hj + 1 be the
sequence of heights. Note that hj = (3j − 1)/2. Chacon’s automorphism T is
the rank-1 transformation that is built via a cutting-and-stacking construc-
tion described below (see [4] and [1]). At the jth stage we cut a tower of
height hj into 3 equal subtowers, add one spacer to the top of the middle
subtower and stack these towers together.
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Fig. 1. Chacon’s automorphism

Our purpose is to prove the following

Theorem 2.1. Let σ be the maximal spectral type of Chacon’s automor-

phism. Then for any d 6= d′ we have σ∗d ⊥ σ∗d′

.

This theorem is a direct corollary of Theorem 1.1 and Lemma 2.3.
We begin with a definition of Chacon’s map which will be more conve-

nient in what follows. Namely, for each j ≥ 1, we may consider T as an in-
tegral automorphism over the 3-adic rotation, by identifying the base Bj of
the jth tower with the group Z3 of 3-adic integers in the following way. Z3

may be considered as the set of all sequences a1a2 . . . , where ak ∈ {0, 1, 2}.
Consider a point x ∈ Bj . When cutting the jth tower into 3 subtowers we
get a partition Bj = Bj,0 ⊔Bj,1 ⊔Bj,2 such that

Bj,0
T

hj

−−−→ Bj,1
T

hj+1

−−−−→ Bj,2
...
−→ Bj,0.

Suppose that x ∈ Bj ≃ [0, 1]. We associate with x its ternary decomposition
a1a2a3 . . . (A more geometric way is to put a1 = a if x ∈ Bj,a, and to define
a2a3 . . . similarly considering x− a/3 ∈ Bj,0 = Bj+1 instead of x.) Then T
can be viewed as the integral automorphism over the map

R : Z3 → Z3 : a1a2a3 . . . 7→ a1a2a3 + 100...

with the ceiling function hj + φ, where

φ(a) =

{
0 if a = 22...20*...,

1 if a = 22...21*...,

where * designates an arbitrary element of {0, 1, 2}. (Note that the condi-
tional measure µ(·|Bj) coincides after identification with the Haar measure λ
on Z3.)



CHACON’S AUTOMORPHISM 71

It is convenient to redefine the function φ so that φ(a) = 0 if a =
00...01*... The new system is conjugate to Chacon’s automorphism. Let
us describe precisely the sets where φ is constant:

φ(a) =

{
0 if a ∈ (0)1*...,

1 if a ∈ (0)2*...,

where (0)1*... and (0)2*... abbreviate the following two sets:

(0)1*... : 1*

01*

001*

0001*

· · ·

(0)2*... : 2*

02*

002*

0002*

· · ·

Each of these two tables should be meant as a code of a partition of some set
in Z3. A row of a table designates an element of a partition, for example, 01*
is the set of sequences a1a2 . . . such that a1 = 0 and a2 = 1. Here * means
an arbitrary element of {0, 1, 2} (more exactly, we assume that any symbol
can appear at this position), and a * at the end of a line abbreviates ** . . .

It is a simple corollary from the definition of Chacon’s transformation
that

T̂−hj
w
−→ λ((0)1*)I+ λ((0)2*)T̂ = 1

2I+
1
2 T̂ ,

where λ is the Haar measure on Z3, and I is the identity operator. Indeed, fix
measurable sets A and C. Since Chacon’s map is a rank-1 transformation,
for any ε > 0 there exists j0 such that for all j ≥ j0 we have µ(A△ Aj) <
ε and µ(C △ Cj) < ε, where Aj and Cj are the unions of levels of the

jth tower. Then the base Bj can be uniquely divided into sets B
(0)
j and

B
(1)
j so that for any level L = T kBj except one, the set T hjL has the

form L(0) ⊔ T−1L(1), where L = L(0) ⊔ L(1) and L(α) = T kB
(α)
j . Moreover,

µ(B
(0)
j |Bj) = λ((0)1*) = µ(B

(1)
j |Bj) = λ((0)2*) = 1/2. It follows directly

from this picture that

µ(T hjAj ∩Cj) ≈
1
2µ(Aj ∩Cj) +

1
2µ(T

−1Aj ∩ Cj)

with precision 1/hj. Taking into account the fact that Aj and Cj approximate
A and C respectively we get the desired convergence

T̂−hj = (T̂ hj )∗
w
−→ 1

2I+
1
2 (T̂

−1)∗ = 1
2I+

1
2 T̂ .

It is also not hard to check using the same technique that

T̂−khj
w
−→ Pk(T̂ ) =

\
Z3

T̂ φ(k)(a) dλ(a) =

k∑

t=0

ck,tT̂
t,
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where

φ(k)(a) =

k−1∑

t=0

φ(R−ta).

(Here we have used the fact that λ is invariant under R.) Note that Pk(T̂ ) is

a polynomial in T̂ . Let P̃k(T̂ ) = T̂−rkPk(T̂ ), where rk is the smallest power

of T̂ in Pk(T̂ ). Evidently, P̃k(T̂ ) ∈ Cl(T̂ ) as well. Below several polynomials

P̃k(T̂ ) are given (1):

P̃1(T̂ ) =
1
2I+

1
2 T̂ , P̃4(T̂ ) =

2
9I+

5
9 T̂ + 2

9 T̂
2,

P̃2(T̂ ) =
1
6I+

4
6 T̂ + 1

6 T̂
2, P̃5(T̂ ) =

1
18I+

8
18 T̂ + 8

18 T̂
2 + 1

18 T̂
3,

P̃3(T̂ ) =
1
2I+

1
2 T̂ , P̃6(T̂ ) =

1
6I+

4
6 T̂ + 1

6 T̂
2.

One can notice that all the polynomials P̃3n coincide with P1 (Lemma 2.2).
The deeper Lemma 2.3 proves the following observation: the polynomials
P̃3n+1 are symmetric square polynomials that tend to P 2

1 as n → ∞.

Lemma 2.2. Let ln = (3n − 1)/2. Then

φ(3n)(a) =

{
ln if a ∈ *n(0)1*,

ln + 1 if a ∈ *n(0)2*,
where *

n = *...*︸ ︷︷ ︸
n

,

and P3n(T̂ ) =
1
2 T̂

ln + 1
2 T̂

ln+1.

P r o o f. This lemma is proved by induction on n. The case n = 0 is
trivial. We will establish the lemma for n = 1. The proof for arbitrary n is
completely analogous. Consider three translations of the function φ:

t = 0 t = 1 t = 2

φ(R−ta) = 0 on
1*

01*

001*

2*

11*

101*

0*

21*

201*

φ(R−ta) = 1 on
2*

02*

002*

0*

12*

102*

1*

22*

202*

Let At
v be the set on which φ(R−ta) = v. Fixing v0, v1, v2 we calculate

A0
v0

∩ A1
v1

∩ A2
v2
. It can be easily checked that it is non-empty only when

v1 + v2 + v3 is either 1 or 2. Suppose that v0 = v1 = 0 and v2 = 1. Then
the only non-trivial intersection is 1* ∩ 1(0)1*∩ 1* = 1(0)1*. Moreover,
in all similar chains sets are ordered. In the intersection considered we have
1* ⊂ 11*, 101*, . . . So, any intersection is uniquely described by the long-
er code, e.g., 1(0)1*. All intersections in our case are represented in the

(1) See www.geocities.com/apri7 for the first 122 polynomials Pk(z).
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following table:

0, 0, 1 : 1(0)1*, 1, 1, 0 : 0(0)2*,

0, 1, 0 : 0(0)1*, 1, 0, 1 : 2(0)2*,

1, 0, 0 : 2(0)1*, 0, 1, 1 : 1(0)2*,

∪ : *(0)1*, ∪ : *(0)2*.

It is evident that φ(3)(a) = 1 iff a ∈ *(0)1*.

Lemma 2.3. T̂−lnP3n+1(T̂ ) are square polynomials ,

T̂−lnP3n+1(T̂ ) =
(3n+1 − 1) + 2(3n+1 + 1)T̂ + (3n+1 − 1)T̂ 2

4 · 3n+1

→

(
1

2
+

1

2
T̂

)2

, n → ∞.

P r o o f. First, note that

φ(3n+1)(a) = φ(3n)(a) + φ(R−3na).

Since both φ(3n) and φ ◦ R−3n take two values, these functions are uniquely
described by the two corresponding partitions (see the discussion above). Let
us see how these partitions look (Figs. 2 and 3).

*...*1* *...*2*

*...*01* *...*02*

*...*001* *...*002*

*...*0001* *...*0002*

Fig. 2. Partitions for φ(3
n)

1* 2*

01* 02*

001* 002*

..... .....

0...1* 0...2*

0...02* 0...00*

0...011* 0...012*

0...0101* 0...0102*

0...01001* 0...01002*

Fig. 3. Partitions for φ ◦ R−3
n

Suppose that φ(3n) − ln and φ ◦ R−3n equal v on the sets Cv and Av

respectively. It can be easily seen from Figures 2 and 3 that
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C0 ∩ A0 =
n−1⋃

p=0

0
p
1*

n−1−p
(0)1* ∪ 0

n
1(0)1*,

C1 ∩ A1 =

n−1⋃

p=0

0
p
2*

n−1−p
(0)2* ∪ 0

n
0(0)2*,

and that

λ(C0 ∩ A0) = λ(C1 ∩ A1) =
1

2

n−1∑

p=0

1

3p+1
+

1

2 · 3n+1
=

3n+1 − 1

4 · 3n+1
→

1

4

as n → ∞. To complete the proof we only have to recall that if Pk(z) =∑k

t=0 ck,tz
t, then

∑k

t=0 ck,t = 1.

Proof of Theorem 2.1. It is shown in Lemma 2.3 that 1 + (2 + εn)T̂ + T̂ 2

∈ Cl(T ) with distinct εn. Thus, Theorem 2.1 follows immediately from The-
orem 1.1.

The authors are very grateful to J. Kwiatkowski, M. Lemańczyk and
J.-P.Thouvenot for encouraging interest in this work, and to the anony-
mous reviewer for numerous remarks and an improvement of the proof of
Theorem 1.1.
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