COLLOQUIUM MATHEMATICUM

VOL. 84/85

2000

PART 1

DISJOINTNESS OF THE CONVOLUTIONS FOR CHACON'S AUTOMORPHISM

BY

A. A. PRIKHOD'KO AND V. V. RYZHIKOV (MOSCOW)

Abstract. The purpose of this paper is to show that if σ is the maximal spectral type of Chacon's transformation, then for any $d \neq d'$ we have $\sigma^{*d} \perp \sigma^{*d'}$. First, we establish the disjointness of convolutions of the maximal spectral type for the class of dynamical systems that satisfy a certain algebraic condition. Then we show that Chacon's automorphism belongs to this class.

Let us consider a measure preserving invertible transformation T of the Lebesgue space (X, μ) . We associate with T the unitary operator $\widehat{T} : f(x) \mapsto f(Tx)$ on $L^2(X, \mu)$. Let σ be the maximal spectral type of \widehat{T} restricted to the subspace H of functions with zero mean.

It is an important problem of spectral theory of dynamical systems to investigate properties of convolutions of the maximal spectral type σ (see [2], [3] and [6]–[8]). This question originates from Kolmogorov's well-known problem concerning the group property of the spectrum. It was discovered that for some automorphisms the spectral type σ and the convolution $\sigma * \sigma$ are mutually singular (see [5]–[8]). An example is the so-called κ -mixing automorphism, i.e. a transformation T with the following property: there exists a subsequence k_j such that \hat{T}^{k_j} converges weakly to the operator $\kappa \Theta + (1 - \kappa)\mathbb{I}$, where Θ is the orthoprojection onto the subspace of constants and \mathbb{I} is the identity operator. This property is known to be generic for measure preserving transformations (see [8]).

Another generic property of automorphisms is the existence of a subsequence k_j such that $\widehat{T}^{k_j} \to \frac{1}{2}\mathbb{I} + \frac{1}{2}\widehat{T}$. This property implies $\sigma \perp \sigma * \sigma$ as well. (This fact was established first by Lemańczyk. Parreau extended this observation by showing that $\sigma \perp \sigma^{*d}$ for all d. Ryzhikov also obtained the same result and used it for solving Rokhlin's problem on homogeneous spectrum (see [2]). Ageev deduced this statement as a consequence of his results concerning spectral multiplicity of $T \times T$.)

This work is supported by RFBR grant N99-01-01104.

²⁰⁰⁰ Mathematics Subject Classification: 28D.

It is known that Chacon's well-known automorphism has the property mentioned above. The following question (raised by del Junco and Lemańczyk [3]) has remained open: are all the *d*-fold convolutions σ^{*d} of the maximal spectral type σ pairwise singular for Chacon's map? In this paper we show that the answer is affirmative. Namely, we establish (Section 2) that the closure of the powers of Chacon's automorphism contains a sequence of symmetric square polynomials which tends to the operator $\left(\frac{1}{2}\mathbb{I}+\frac{1}{2}\widehat{T}\right)^2$, and we show that this condition implies the disjointness of the convolutions.

1. Disjointness of convolutions. Let Cl(T) be the set of all operators cK, where c is a positive number and K belongs to the weak closure of the powers of the operator \widehat{T} .

THEOREM 1.1. Let σ be the maximal spectral type of a weakly mixing automorphism T. Suppose that for some sequence a_n of distinct positive numbers the set Cl(T) contains the polynomials

$$Q_n(\widehat{T}) = \mathbb{I} + a_n \widehat{T} + \widehat{T}^2$$
, where \mathbb{I} is the identity operator.

Then all the convolutions σ^{*d} are mutually singular.

Proof. Let us fix integers d' > d > 1 and show that $\sigma^{*d} \perp \sigma^{*d'}$. Suppose that an operator $J: H^{\otimes d} \to H^{\otimes d'}$ satisfies

$$J \underbrace{\widehat{T} \otimes \ldots \otimes \widehat{T}}_{d} = \underbrace{\widehat{T} \otimes \ldots \otimes \widehat{T}}_{d'} J$$

where H is the subspace in $L^2(X,\mu)$ of functions with zero mean. It is enough to prove that J = 0. Indeed, it is evident that σ^{*d} is the spectral type of the operator $\widehat{T}^{\otimes d}$ restricted to the subspace $H^{\otimes d}$. Suppose that $\sigma^{*d} \not\perp \sigma^{*d'}$. Then there are two cyclic subspaces $C_1 \subset H^{\otimes d}$ and $C_2 \subset H^{\otimes d'}$ with the same spectral measure. Let J be an operator establishing a unitary equivalence between the restriction of $\widehat{T}^{\otimes d}$ to C_1 and the restriction of $\widehat{T}^{\otimes d'}$ to C_2 which is zero on C_1^{\perp} . Then, evidently, $JT^{\otimes d} = T^{\otimes d'}J$ and $J \neq 0$. For any $K \in \operatorname{Cl}(T)$ we have $JK^{\otimes d} = \gamma(K)K^{\otimes d'}J$, where $\gamma(K)$ is a

positive constant that depends on K. In particular, for $K = Q_n(\widehat{T})$,

$$J(\mathbb{I} + a_n \widehat{T} + \widehat{T}^2)^{\otimes d} = \gamma_n \left(\mathbb{I} + a_n \widehat{T} + \widehat{T}^2\right)^{\otimes d'} J, \quad \gamma_n = \frac{1}{(2 + a_n)^{d'-d}}$$

The left part of this equation can be represented in the form $J \sum_{i=0}^{d} a_n^i W_i^{(d)}$, where

$$W_i^{(d)} = \sum_{\substack{(r_1, \dots, r_d) \\ r_k \in \{-1, 0, 1\}, \, |r_1| + \dots + |r_d| = d - i}} \widehat{T}^{1+r_1} \otimes \dots \otimes \widehat{T}^{1+r_d}$$

Since the dimension of the space spaned by $W_k^{(d)}$ is not greater than d+1,

there exists a non-trivial sequence of reals c_i such that

$$J\sum_{n=1}^{d+2} c_n Q_n(\widehat{T})^{\otimes d} = 0.$$

This implies that

$$\sum_{n=1}^{d+2} \gamma_n c_n Q_n(\widehat{T})^{\otimes d'} J = 0.$$

We will show that the operators $W_i^{(d')}J$ are linearly independent. It will follow that the operators $Q_n(\hat{T})^{\otimes d'}J$, $1 \leq n \leq k$, are linearly independent if and only if $k \leq d'+1$. (This follows directly from the representation $Q_n(\hat{T})^{\otimes d'} = \sum_{i=0}^{d'} a_n^i W_i^{(d')}$ and the fact that the a_n are distinct.) Thus, the linear combination above cannot be zero because $d + 2 = (d+1) + 1 \leq d' + 1$ (recall that d < d'). This contradiction completes the proof.

The only thing we must show is that the $W_i^{(d')}J$ are linearly independent. Indeed, any non-trivial linear combination $\sum_i c_i W_i^{(d')}J$ has the form $V(\hat{T}, \ldots, \hat{T})J = 0$, where V is some non-trivial polynomial of d' variables. If $J \neq 0$, then there exists a function f such that $Jf \neq 0$. Let us pass to the spectral representation of \hat{T} . Namely, set

$$U: L^2(\mathbb{T}, \sigma) \to L^2(\mathbb{T}, \sigma): \phi(z) \mapsto z\phi(z)$$

and let $\Phi : L^2(X,\mu) \to L^2(\mathbb{T},\sigma)$ be the unitary operator that conjugates \widehat{T} and $U: \Phi \widehat{T} = U \Phi$.

Then for the function $F = \Phi^{\otimes d'} J f$ on $\mathbb{T}^{d'}$ we have

$$0 = \Phi^{\otimes d'} V(\widehat{T}, \dots, \widehat{T})(Jf) = V(z_1, \dots, z_{d'})F.$$

Thus, F is supported on the manifold $\mathcal{N} = \{V(z_1, \ldots, z_{d'}) = 0\}$. It is not hard to prove that, since V is a polynomial, we have $\sigma^{\otimes d'}(\mathcal{N}) = 0$. Indeed, suppose, for simplicity, that d' = 2. Then there are finitely many points $z_1^{(j)}$ such that $\mathcal{N} \cap (\{z_1^{(j)}\} \times \mathbb{T})$ is not finite. It is known that a transformation is weakly mixing iff it has continuous spectrum. Hence, $(\sigma \times \sigma)(\mathcal{N}) = 0$, because \widehat{T} is weakly mixing. Thus, Jf = 0 and J must be zero; but $J \neq 0$, and we have proved that the $W_i^{(d')}$ are linearly independent.

2. Chacon's automorphism. Let $h_1 = 1$ and $h_{j+1} = 3h_j + 1$ be the sequence of heights. Note that $h_j = (3^j - 1)/2$. Chacon's automorphism T is the rank-1 transformation that is built via a cutting-and-stacking construction described below (see [4] and [1]). At the *j*th stage we cut a tower of height h_j into 3 equal subtowers, add one spacer to the top of the middle subtower and stack these towers together.

Fig. 1. Chacon's automorphism

Our purpose is to prove the following

THEOREM 2.1. Let σ be the maximal spectral type of Chacon's automorphism. Then for any $d \neq d'$ we have $\sigma^{*d} \perp \sigma^{*d'}$.

This theorem is a direct corollary of Theorem 1.1 and Lemma 2.3.

We begin with a definition of Chacon's map which will be more convenient in what follows. Namely, for each $j \ge 1$, we may consider T as an integral automorphism over the 3-adic rotation, by identifying the base B_j of the *j*th tower with the group \mathbb{Z}_3 of 3-adic integers in the following way. \mathbb{Z}_3 may be considered as the set of all sequences $a_1a_2\ldots$, where $a_k \in \{0, 1, 2\}$. Consider a point $x \in B_j$. When cutting the *j*th tower into 3 subtowers we get a partition $B_j = B_{j,0} \sqcup B_{j,1} \sqcup B_{j,2}$ such that

$$B_{j,0} \xrightarrow{T^{h_j}} B_{j,1} \xrightarrow{T^{h_j+1}} B_{j,2} \xrightarrow{\dots} B_{j,0}$$

Suppose that $x \in B_j \simeq [0,1]$. We associate with x its ternary decomposition $a_1a_2a_3...$ (A more geometric way is to put $a_1 = a$ if $x \in B_{j,a}$, and to define $a_2a_3...$ similarly considering $x - a/3 \in B_{j,0} = B_{j+1}$ instead of x.) Then T can be viewed as the integral automorphism over the map

$$R: \mathbb{Z}_3 \to \mathbb{Z}_3: a_1 a_2 a_3 \ldots \mapsto a_1 a_2 a_3 + 100 \ldots$$

with the ceiling function $h_j + \phi$, where

$$\phi(a) = \begin{cases} 0 & \text{if } a = 22...20*..., \\ 1 & \text{if } a = 22...21*..., \end{cases}$$

where * designates an arbitrary element of $\{0, 1, 2\}$. (Note that the conditional measure $\mu(\cdot|B_j)$ coincides after identification with the Haar measure λ on \mathbb{Z}_{3} .)

It is convenient to redefine the function ϕ so that $\phi(a) = 0$ if a = 00...01*... The new system is conjugate to Chacon's automorphism. Let us describe precisely the sets where ϕ is constant:

$$\phi(a) = \begin{cases} 0 & \text{if } a \in (0) 1 * \dots, \\ 1 & \text{if } a \in (0) 2 * \dots, \end{cases}$$

where $(0)1*\ldots$ and $(0)2*\ldots$ abbreviate the following two sets:

Each of these two *tables* should be meant as a code of a partition of some set in \mathbb{Z}_3 . A row of a table designates an element of a partition, for example, 01* is the set of sequences $a_1a_2...$ such that $a_1 = 0$ and $a_2 = 1$. Here * means an arbitrary element of $\{0, 1, 2\}$ (more exactly, we assume that any symbol can appear at this position), and a * at the end of a line abbreviates **...

It is a simple corollary from the definition of Chacon's transformation that

$$\widehat{T}^{-h_j} \xrightarrow{\mathrm{w}} \lambda((0) \mathbf{1*}) \mathbb{I} + \lambda((0) \mathbf{2*}) \widehat{T} = \frac{1}{2} \mathbb{I} + \frac{1}{2} \widehat{T}$$

where λ is the Haar measure on \mathbb{Z}_3 , and \mathbb{I} is the identity operator. Indeed, fix measurable sets A and C. Since Chacon's map is a rank-1 transformation, for any $\varepsilon > 0$ there exists j_0 such that for all $j \ge j_0$ we have $\mu(A \triangle A_j) < \varepsilon$ and $\mu(C \triangle C_j) < \varepsilon$, where A_j and C_j are the unions of levels of the *j*th tower. Then the base B_j can be uniquely divided into sets $B_j^{(0)}$ and $B_j^{(1)}$ so that for any level $L = T^k B_j$ except one, the set $T^{h_j}L$ has the form $L^{(0)} \sqcup T^{-1}L^{(1)}$, where $L = L^{(0)} \sqcup L^{(1)}$ and $L^{(\alpha)} = T^k B_j^{(\alpha)}$. Moreover, $\mu(B_j^{(0)}|B_j) = \lambda((0)\mathbf{1}*) = \mu(B_j^{(1)}|B_j) = \lambda((0)\mathbf{2}*) = 1/2$. It follows directly from this picture that

$$\mu(T^{h_j}A_j \cap C_j) \approx \frac{1}{2}\mu(A_j \cap C_j) + \frac{1}{2}\mu(T^{-1}A_j \cap C_j)$$

with precision $1/h_j$. Taking into account the fact that A_j and C_j approximate A and C respectively we get the desired convergence

$$\widehat{T}^{-h_j} = (\widehat{T}^{h_j})^* \xrightarrow{\mathrm{w}} \frac{1}{2}\mathbb{I} + \frac{1}{2}(\widehat{T}^{-1})^* = \frac{1}{2}\mathbb{I} + \frac{1}{2}\widehat{T}.$$

It is also not hard to check using the same technique that

$$\widehat{T}^{-kh_j} \xrightarrow{\mathrm{w}} P_k(\widehat{T}) = \int_{\mathbb{Z}_3} \widehat{T}^{\phi^{(k)}(a)} \, d\lambda(a) = \sum_{t=0}^k c_{k,t} \widehat{T}^t,$$

where

$$\phi^{(k)}(a) = \sum_{t=0}^{k-1} \phi(R^{-t}a).$$

(Here we have used the fact that λ is invariant under R.) Note that $P_k(\widehat{T})$ is a polynomial in \widehat{T} . Let $\widetilde{P}_k(\widehat{T}) = \widehat{T}^{-r_k} P_k(\widehat{T})$, where r_k is the smallest power of \widehat{T} in $P_k(\widehat{T})$. Evidently, $\widetilde{P}_k(\widehat{T}) \in \operatorname{Cl}(\widehat{T})$ as well. Below several polynomials $\widetilde{P}_k(\widehat{T})$ are given (¹):

$$\begin{split} \widetilde{P}_1(\widehat{T}) &= \frac{1}{2}\mathbb{I} + \frac{1}{2}\widehat{T}, \\ \widetilde{P}_2(\widehat{T}) &= \frac{1}{6}\mathbb{I} + \frac{4}{6}\widehat{T} + \frac{1}{6}\widehat{T}^2, \\ \widetilde{P}_3(\widehat{T}) &= \frac{1}{2}\mathbb{I} + \frac{1}{2}\widehat{T}, \end{split} \\ \widetilde{P}_5(\widehat{T}) &= \frac{1}{18}\mathbb{I} + \frac{8}{18}\widehat{T} + \frac{8}{18}\widehat{T}^2 + \frac{1}{18}\widehat{T}^3, \\ \widetilde{P}_6(\widehat{T}) &= \frac{1}{6}\mathbb{I} + \frac{4}{6}\widehat{T} + \frac{1}{6}\widehat{T}^2. \end{split}$$

One can notice that all the polynomials \widetilde{P}_{3^n} coincide with P_1 (Lemma 2.2). The deeper Lemma 2.3 proves the following observation: the polynomials \widetilde{P}_{3^n+1} are symmetric square polynomials that tend to P_1^2 as $n \to \infty$.

LEMMA 2.2. Let $l_n = (3^n - 1)/2$. Then

 $\phi^{(3^n)}(a) = \begin{cases} l_n & \text{if } a \in *^n(0) \mathbf{1}^*, \\ l_n + 1 & \text{if } a \in *^n(0) \mathbf{2}^*, \end{cases} \quad where \quad *^n = \underbrace{* \dots *}_n,$

and $P_{3^n}(\widehat{T}) = \frac{1}{2}\widehat{T}^{l_n} + \frac{1}{2}\widehat{T}^{l_n+1}.$

Proof. This lemma is proved by induction on n. The case n = 0 is trivial. We will establish the lemma for n = 1. The proof for arbitrary n is completely analogous. Consider three translations of the function ϕ :

$$\begin{split} t &= 0 & t = 1 & t = 2 \\ \phi(R^{-t}a) &= 0 & \text{on} & \begin{array}{cccc} 1* & 2* & 0* \\ 01* & 11* & 21* \\ 001* & 101* & 201* \\ 2* & 0* & 1* \\ \phi(R^{-t}a) &= 1 & \text{on} & \begin{array}{cccc} 02* & 12* & 22* \\ 002* & 102* & 202* \\ \end{array} \end{split}$$

Let A_v^t be the set on which $\phi(R^{-t}a) = v$. Fixing v_0, v_1, v_2 we calculate $A_{v_0}^0 \cap A_{v_1}^1 \cap A_{v_2}^2$. It can be easily checked that it is non-empty only when $v_1 + v_2 + v_3$ is either 1 or 2. Suppose that $v_0 = v_1 = 0$ and $v_2 = 1$. Then the only non-trivial intersection is $1* \cap 1(0) 1* \cap 1* = 1(0) 1*$. Moreover, in all similar chains sets are ordered. In the intersection considered we have $1* \subset 11*, 101*, \ldots$ So, any intersection is uniquely described by the longer code, e.g., 1(0)1*. All intersections in our case are represented in the

^{(&}lt;sup>1</sup>) See www.geocities.com/apri7 for the first 122 polynomials $P_k(z)$.

following table:

0, 0, 1:	1(0)1*,	1, 1, 0:	0(0)2*,
0, 1, 0:	0(0)1*,	1, 0, 1:	2(0)2*,
1, 0, 0:	<u>2(0)1*</u> ,	0, 1, 1:	<u>1(0)2*</u> ,
\cup :	*(0)1*,	\cup :	*(0)2*.

It is evident that $\phi^{(3)}(a) = 1$ iff $a \in *(0)1*$.

LEMMA 2.3. $\widehat{T}^{-l_n} P_{3^n+1}(\widehat{T})$ are square polynomials,

$$\begin{split} \widehat{T}^{-l_n} P_{3^n+1}(\widehat{T}) &= \frac{(3^{n+1}-1) + 2(3^{n+1}+1)\widehat{T} + (3^{n+1}-1)\widehat{T}^2}{4\cdot 3^{n+1}} \\ &\to \left(\frac{1}{2} + \frac{1}{2}\widehat{T}\right)^2, \quad n \to \infty. \end{split}$$

Proof. First, note that

$$\phi^{(3^n+1)}(a) = \phi^{(3^n)}(a) + \phi(R^{-3^n}a).$$

Since both $\phi^{(3^n)}$ and $\phi \circ R^{-3^n}$ take two values, these functions are uniquely described by the two corresponding partitions (see the discussion above). Let us see how these partitions look (Figs. 2 and 3).

**1*	**2*
**01*	**02*
**001*	**002*
**0001*	**0002*

Fig. 2. Partitions for $\phi^{(3^n)}$

1*	2*
01*	02*
001*	002*
01* 002* 0011*	02* 000* 0012*
001001*	00102*

Fig. 3. Partitions for $\phi \circ R^{-3^n}$

Suppose that $\phi^{(3^n)} - l_n$ and $\phi \circ R^{-3^n}$ equal v on the sets C_v and A_v respectively. It can be easily seen from Figures 2 and 3 that

$$C_0 \cap A_0 = \bigcup_{\substack{p=0\\n-1}}^{n-1} 0^p 1 *^{n-1-p} (0) 1 * \cup 0^n 1 (0) 1 *,$$

$$C_1 \cap A_1 = \bigcup_{p=0}^{n-1} 0^p 2 *^{n-1-p} (0) 2 * \cup 0^n 0 (0) 2 *,$$

and that

$$\lambda(C_0 \cap A_0) = \lambda(C_1 \cap A_1) = \frac{1}{2} \sum_{p=0}^{n-1} \frac{1}{3^{p+1}} + \frac{1}{2 \cdot 3^{n+1}} = \frac{3^{n+1} - 1}{4 \cdot 3^{n+1}} \to \frac{1}{4}$$

as $n \to \infty$. To complete the proof we only have to recall that if $P_k(z) = \sum_{t=0}^k c_{k,t} z^t$, then $\sum_{t=0}^k c_{k,t} = 1$.

Proof of Theorem 2.1. It is shown in Lemma 2.3 that $1 + (2 + \varepsilon_n)\widehat{T} + \widehat{T}^2$ $\in \operatorname{Cl}(T)$ with distinct ε_n . Thus, Theorem 2.1 follows immediately from Theorem 1.1.

The authors are very grateful to J. Kwiatkowski, M. Lemańczyk and J.-P. Thouvenot for encouraging interest in this work, and to the anonymous reviewer for numerous remarks and an improvement of the proof of Theorem 1.1.

REFERENCES

- S. Ferenczi, Systems of finite rank, Colloq. Math. 73 (1997), 35-65.
- [2]G. Goodson, A survey of recent results in the spectral theory of ergodic dynamical systems, J. Dynam. Control Systems 5 (1999), 173-226.
- [3] A. del Junco and M. Lemańczyk, Generic spectral properties of measure preserving maps and applications, Proc. Amer. Math. Soc., 115 (1992), 725-736. [4]A. del Junco, A. M. Rahe and L. Swanson, Chacon's automorphism has
- minimal self-joinings, J. Anal. Math. 37 (1980), 276–284. A. B. Katok, *Constructions in Ergodic Theory*, unpublished lecture notes.
- V. I. Oseledec, An automorphism with simple and continuous spectrum not [6]having the group property, Math. Notes 5 (1969), 196-198.
- A. M. Stepin, On properties of spectra of ergodic dynamical systems with [7]locally compact time, Dokl. Akad. Nauk SSR 169 (1966), 773-776 (in Russian).
- -, Spectral properties of generic dynamical systems, Math. USSR-Izv. 29 (1987), [8] 159 - 192.

Department of Mathematics Moscow State University 119899 Moscow, Russia E-mail: apri7@geocities.com (A. A. Prikhod'ko) vryz@mech.math.msu.su (V. V. Ryzhikov)

> Received 10 May 1999; revised 11 February 2000

(3753)