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SEVERAL QUESTIONS AND HYPOTHESES

CONCERNING LIMIT POLYNOMIALS FOR THE

CHACON(3) TRANSFORMATION

A.A.Prikhod’ko, V.V.Ryzhikov

ABSTRACT. We study the weak closure L = WCl({T̂k}) of powers of non-
singular Chacon transformation with 2-cuts. It is still an open question does L
contain any Markov operator except an orthogonal projector to the constants Θ

and some polynomials P (T̂ ) ? In this paper we calculate a particular set of limit

polynomials

Pm(T̂ ) = lim
n→∞

T̂−mhn , m ∈ Z,

where hn = (3n − 1)/2 are the sequence of heights of towers in a standard rank
one representation of the Chacon map. We show that for any d ≥ 2 the family
of limit polynomials contains infinitely many polynomials of degree d. We also

formulate hyposeses and open questions concerning the sequence of polynomials
Pm and the entire set L .

1. Introduction

Chacon(3) transformation in terms of symbolic dynamics can be defined as a
substitution system over the finite alphabet A = {0, 1} via a pair of substitution
rules 0 7→ 0010, 1 7→ 1. Starting with an initial word w0 = 0 and applying
the substitution transform we construct the sequence of words wn,

w0 = 0

w1 = 0010
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LIMIT POLYNOMIALS FOR THE CHACON TRANSFORMATION

w2 = 0010001010010

w3 = 0010001010010001000101001010010001010010

. . .

and then define an infinite word w∞ such that each wn is a prefix of w∞. Further,
considering the closure X of all shifts of w∞ in the space A∞ endowed with the
Tikhonov topology we come to a topological dynamical system (S,X,B), where
B is the σ-algebra of Borel sets and T is the shift transformation,

T : . . . , x0, x1, . . . , xj , . . . 7→ . . . , x1, x2, . . . , xj+1, . . .

Let us consider a natural invariant measure µ on the measurable space (X,B)
defined as follows. For a finite word w let µ([w]) be the empirical probability of
observing w in w∞, where where [w] is the set encoded by w:

[w]
def
= {x ∈ X : x0 = w(0), . . . , xℓ−1 = w(ℓ− 1)},

ℓ = |w| is the length of w and w(j) denotes the letter at position j in w.

Definition 1. The map T considered as a measure-preserving invertible trans-
formation of the probability space (X,B, µ) is called non-singular Chacon trans-
formation with 2-cuts or Chacon(3) transformation (see [Cha69, Fri70]).

Transformation T has an interesting combination of ergodic properties. The
map T is known to be weakly mixing and power weakly mixing [Dan04], but
not strongly mixing [Cha69]. It has trivial centralizer [dJ78] and minimal self-
joinings [dJRS80]. It is also known that the spectral measure σ of Chacon trans-
formation T is singular and its convolutions satisfy the following condition of
pairwise singularity [PR],

σ ⊥ σ ∗ σ,
σ ∗ σ ⊥ σ ∗ σ ∗ σ,

. . .

σ∗k ⊥ σ∗ℓ for any k ̸= ℓ.

The study of convolutions of the spectral type measure σ goes back to the
Kolmogorov’s question concerning the hypothetic group property of spectrum:
is it true that σ ∗ σ ≪ σ? This property holds for the discrete part of spectrum,
but it is generally false for the singular component. Moreover, now we know
many examples of ergodic transformations T such that σ ∗ σ ⊥ σ (see [Ose69,
Ste87, Goo99, dJL92]).

For a survey of problems in modern spectral theory of dynamical systems
the reader can refer to [Lem09] and [KT07].
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Definition 2. We say that a map T is mixing if

µ(T kA ∩B) → µ(A)µ(B) as k → ∞,

for any measurable sets A and B, and we call T weakly mixing if the convergence
holds for a subsequence kj .

Both mixing and weak mixing properties can be described in spectral terms.

Definition 3. Let T̂ be the unitary Koopman operator, associated with T and
acting in the separable Hilbert space H = L2(X,µ) by the following rule

T̂ : f(x) 7→ f(Tx).

A sequence of bounded linear operators Aj : H → H in a Hilbert space H
converges weakly to A if for any f, g ∈ H

⟨Ajf, g⟩ → ⟨Af, g⟩ , j → ∞.

Let Θ denote the orthogonal projector to constants,

(Θf)(x) ≡
∫
X

f(z) dµ(z).

A transformation T is weakly mixing if and only if

T kj → Θ

for some subsequence kj . It means that Θ is in the weak closure L = WCl({T̂ k})
of powers T̂ k.

2. Limit polynomials

In our investigation [PR] to prove the pairwise singularity of the convolutions
σ∗k we used the following observation.

Lemma 4. In the weak close of powers L = WCl({T̂ k}) for Chacon transfor-
mation T one can find an infinite family of non-trivial square polynomials

Qm(T̂ ) =
(3s − 1)I+ 2(3s + 1)T̂ + (3s − 1)T̂ 2

4 · 3s
,

for m = 3s + 1 and, moreover,

Qm(T̂ ) = lim
n→∞

T̂mhn−ls ,

where ls = hs = (3s − 1)/2 and I is the identity operator.

In order to understand this phenomenon let us consider a simpler case.
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Lemma 5. There exists a sequence kj → ∞ such that

T̂ kj → I+ T̂

2
.

P r o o f. Another way to define Chacon transformation as a measure-preserving
transformation is to use the concept of rank one transformation.

Definition 6. Let T be a measure-preserving transformation of a probability
space (X,B, µ). Then T is called rank one transformation if there exists a se-
quence of Rokhlin tower partitions

ξj = {Bj , TBj , T
2Bj , . . . , T

hn−1Bj , Ej}

of the phase space such that µ(Ej) → 0 and for any measurable set A one can
find ξj-measurable sets Aj approximating A: µ(Aj △A) → 0 as j → ∞.

In fact, Chacon transformation is rank one and can be constructed using
so-called cutting-and-stacking construction.

L0,1 L0,2 L0,3

S1

Figure 1. Chacon(3) transformation: several steps in the cutting-and-
stacking construction: n = 1

L0,1

L0,2

L0,3

S1

Figure 2. Cutting-and-stacking construction: n = 2
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−→

Figure 3. Cutting-and-stacking construction: n = 3 and n = 4

Construction 7. We start with a unit segment [0, 1] interpreted as a Rokhlin
tower U0 of height h0 = 1. Then we cut this segment twice, in three equal parts

L1,0 = [0, 1/3), L1,1 = [1/3, 2/3), L1,2 = [2/3, 1],

and add one additional “level”, a segment S1 of length 1/3 which is drawn above
the middle part [1/3, 2/3) (see fig. 1),

S1

L1,0 L1,1 L1,2

Now we stack all these segments in the natural order: L1,0 L1,1 S1 L1,2 and we
get the next Rokhlin tower U1 of height h1 = 4 (see fig. 2). In other words, we
assume that

L1,0
T−→ L1,1

T−→ S1
T−→ L1,2,

and T will be defined on L1,2 on the next steps of the construction. We repeat
the same procedure with the new tower: we cat it in three equal columns, put one
additional level to the top of the middle column and stack together (fig. 1–3).

At each step of the construction we have a Rokhlin tower Un of height hn =
(3n−1)/2. It can be easily checked that this sequence serves as an approximating
sequence of Rokhlin towers in the definition of rank one transformation.
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Note that if we draw all the additional level above the corresponding sub-
columns without restacking the tower Un at the step n we come to the following
representation of the Chacon map (see fig. 4).

Figure 4. Chacon(3) transformation drawn without restacking

Construction 8. Let us consider a compact group of 3-adic integers Γ = Z(3).
We associate Γ with the set of one-sided 3-adic sequences

y = (y1, y2, . . . , yk, . . . ), yk ∈ {0, 1, 2}.

As a measure space Γ is isomorphic to the unit segment [0, 1] by the mapping

y 7→
∞∑
k=1

1

3k
yk.

It follows easily from the cutting-and-stacking construction that Chacon map T
is the integral transformation over the adding machine transformation

S : Γ → Γ: y → y + 1

acting on the base level of the tower Un identified with Γ with the ceiling function
rn(y) = hn + ϕ0(y) (see fig. 5),

ϕ0(y) =

{
0, if y = 22 . . . 20*

1, if y = 22 . . . 21*

where * indicates any symbol in alphabet {0, 1, 2} if put inside a block, and any
infinite sequence of symbols if it ends the block.
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T

...

1*

0*

21*

20*

221*

Figure 5. Chacon(3) transformation: cutting-and-stacking construction

and cocycle ϕ0(y).

Now we are ready to finish the proof of lemma 5. It can be easily checked that
any measurable function f ∈ L2(X,µ) is approximated by functions constant on
levels of a tower in the rank one representation (e.g. see [Fer97]). So, without loss
of generality we may assume that f is constant on the levels of some tower Un0 .
Then f is constant on levels of any tower Un with n > n0. Let us partition Un for

each n ≥ n0 into sets U
(0)
n and U

(1)
n according to the value of the cocycle ϕ0(y),

where y is considered as a point in the base of Un. We see that

f(Thnx) = f(x), if x ∈ U (0)
n

and

f(Thnx) = f(T−1x), if x ∈ U (1)
n

for all points x ∈ Un except the first level Bn of the tower Un (observe that
µ(Bn) → 0). Thus,

T̂hn → I+ T̂−1

2

in the weak topology, since µ(U
(0)
n ) = µ(U

(0)
n ) = 1/2, and applying conjugation

we complete the proof. �
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Analyzing the effect used in the proof we see that lemma 5 can be easily
extended in the following way. Given m ∈ N let us consider the sum

ϕ
(m)
0 = ϕ0(y) + ϕ0(Sy) + . . . ϕ0(S

m−1y)

and define the corresponding distribution ρm of the values of ϕ
(m)
0 . Actually,

ρm is the measure on Z with a finite support, and ρm(A) = λ((ϕ
(m)
0 )−1(A)),

where λ is the Haar probability measure on Γ.

Lemma 9. For any m ∈ N the sequence T̂−mhn converges weakly to a polynomial
Pm(T̂ ) depending on T̂ , and

Pm(T̂ )
def
= lim

n→∞
T̂−mhn =

∫
Z
T̂ k dρm(k) =

∫
Γ

T̂ϕ
(m)
0 (y) dλ(y).

The scheme of the proof can be found in [PR], and the idea can be explained
as follows. Passing the tower Un m times we count (in addition to mhn) the
values of the cocycle ϕ0(y) at the points

ϕ0(y), ϕ0(Sy), . . . . . . ϕ0(S
m−1y).

Thus, T̂−mhn converges weakly to the weighted sum of powers T̂ k with respect
to the distribution ρm.

Let us compute several first polynomials Pn(T̂ ):

P1(T̂ ) =
1

2
(I+ T̂ )

P2(T̂ ) =
1

6
(I+ 4T̂ + T̂ 2)

P3(T̂ ) =
1

2
(T̂ + T̂ 2)

P4(T̂ ) =
1

9
(2T̂ + 5T̂ 2 + 2T̂ 3)

P5(T̂ ) =
1

18
(T̂ + 8T̂ 2 + 8T̂ 3 + T̂ 4)

Since the weak closure WCl({T̂ j}) is invariant under multiplication by T̂ s for

any s ∈ Z we can reduce the polynomials Pm(T̂ ) dividing by the smallest power

lm of T̂ in Pm(T̂ ). Set

P̃m(z) = z−lm · Pm(z).

Let us represent P̃m(z) in the form

P̃m(z) = am,0 + am,1z + · · ·+ am,d(m)z
d(m),

where d(m) = deg P̃m(z).
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Lemma 10. The coefficients am,j ∈ Q satisfy the following Markov property

d(m)∑
j=0

am,j = 1, and am,j ≥ 0.

T

...

2*

1*

02*

01*

002*

Figure 6. Chacon(3) map after the coordinate change y 7→ y + 1 and the

graph of the cocycle ϕ(y).

In table 1 of the Appendix we list the first 122 polynomials P̃m(z).

Let us discuss several remarks explaining the structure of this table. First, for
simplicity of calculations we apply the transform y 7→ y + 1 to the base of the
tower Un and consider the following cocycle ϕ(y) instead of ϕ0(y) (see fig. 6),

ϕ(y) =

{
0, if y = 00 . . . 01*

1, if y = 00 . . . 02*

The function ϕ(y) is more convenient for calculation of the iterates ϕ(Sky).

Lemma 11 (see [PR]). For any power 3ℓ of three we have

ϕ(3ℓ)(y) =

{
0, if y = *ℓ(0)1*

1, if y = *ℓ(0)1*
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where the notation (0) is used for any sequence of zeros (including empty se-
quence), and *ℓ denotes an arbitrary word of length ℓ. An equivalent way how
we can state this property of the cocycle is to say that

ϕ(3ℓ)(y) = ϕ(Ay),

where A is the non-invertible left shift:

A(y1y2 · · · yk · · · ) = y2y3 · · · yk+1 · · ·

It follows immediately from this lemma that polynomials P̃m(z) repeat after
multiplication by 3,

P3m(z) = Pm(z).

Theorem 12. For any d ∈ N the family {P̃m} contains infinitely many polyno-
mials of degree d.

P r o o f. The theorem is based on the following observation. If we consider func-
tions ϕ(m1)(y) and ϕ(m2)(Sky) as random variables defined on Γ, then ϕ(m)(y)
and ϕ(y) are almost independent. This means that for any ε0 > 0 and any pair

of sets B1 = {y : ϕ(m1)(y) = v1} and B
(k)
2 = {y : ϕ(m2)(Sky) = v2} we have∣∣µ(B1 ∩B

(k)
2 )− µ(B1)µ(B

(k)
2 )

∣∣ < ε

for sufficiently big k. Thus, extending the proof of lemma 4 we see that config-
urations

m(ℓ1, . . . , ℓd−1) = 10ℓ110ℓ2100 . . . 0ℓd−113

generates for sufficiently big ℓj polynomials P(ℓj)(z) of degree d such that

lim
ℓj→∞

P(ℓj)(T̂ ) =
1

2d
(I+ T̂ )d.

Here α1α2 · · ·αN
3 (a sequence of digits with index “3”) stands for the 3-adic

expansion of an integer number. �

To illustrate the construction used in the proof let us consider configuration

m(ℓ1, ℓ2) = 10ℓ110ℓ213 = 1

ℓ1︷ ︸︸ ︷
00 . . . 0 1

ℓ2︷ ︸︸ ︷
000 . . . 0 13

Set

p−[i,j] = p−i + p−i−1 + · · ·+ p−j ,

and notice that 3−[1,∞] = limj→∞ 3−[1,j] = 1/2.
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Lemma 13. Pm(ℓ1,ℓ2) is a self-reciprocal polynomial,

Pm(ℓ1,ℓ2) = γz3 + (1/2− γ)z2 + (1/2− γ)z + γ,

where
γ = 3−[1,ℓ1]3−[1,ℓ2] + 3−[1,ℓ1]3−(ℓ2+1) + 3−(ℓ1+1)3−[1,ℓ2].

P r o o f. The proof of this lemma is very close to that of lemma 4. �

In the next section we formulate a set of hypotheses concerning the properties

of the limit polynomials P̃m(z). In hypothesis 1 we conjecture that all polyno-

mials P̃m(z) are self-reciprocal, i.e. they have coefficients am,j symmetric with

respect to the transform j 7→ d(m)− j, where d(m) = deg P̃m,

P̃m(z) =

d(m)∑
j=0

am,jz
j , am,j = am,d(m)−j .

In other words, the sequence am,j is symmetric.

Note that hypothesis 1 stated in section 3 implies that, whenever d(m) is odd ,

the point (−1) is always a root of P̃m. Nevertheless, we could ask is it the only

way to factorize P̃m?

Theorem 14. The family of limit polynomials Pm(z) contains infinitely many

cubic polynomials for which Rm(z) = (z + 1)−1P̃m(z) are irreducible over Q.

We use in the proof the following theorem.

Lemma 15 (Eisenstein’s criterion). Consider a polynomial P ∈ Q[z],

P (z) = anz
n + · · ·+ a1z + a0,

and suppose that there exists a prime number p sush that

p ̸ | an, p2 ̸ | a0,
p | aj for j = 0, 1, . . . , n− 1.

Then P (z) is irreducible over Q.

P r o o f o f t h e o r e m 14. Indeed, consider cubic polynomials given by config-
urations 10ℓ110ℓ21 with ℓ1 = ℓ2 (see table 2 of the Appendix). With a simplified
notation ℓ = ℓ1 we have

Pm(ℓ,ℓ)(z) =
(3a2 + 2a)(z3 + 1) + (32ℓ+1 − 3a2 − 2a))(z2 + z)

2 · 32ℓ+1
,

where

3−[1,ℓ] =
1

3
+ · · ·+ 1

3ℓ
=

a

3ℓ
, gcd(a, 3) = 1.
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Next, let us apply the transform z = −1 + w to Pm(ℓ,ℓ). We get a new polynomial

P ∗(w) = (3a2 + 2a)w3 + (32ℓ+1 − 8a− 12a2)(w − 1).

What are the common divisors of

X = 3a2 + 2a and Y = 32ℓ+1 − 8a− 12a2 ?

We have

Y + 4X = 32ℓ+1

and, at the same time,

X = a(3a+ 2)

is factorized in two numbers, both are relatively prime to 3. Thus, taking any
prime divisor of Y and applying Eisenstein’s criterion we see that P ∗(w) is
irreducible over Q. �

It is interesting to remark that the quadratic polynomials given in lemma 4

are factorized over Q, thus, to see that there exists irreducible polynomial P̃m(z)
we have to consider a particular example:

P̃2(z) =
1

6
(z2 + 4z + 1).

Substituting z = −1 + w we get a polynomial

P ∗(w) =
1

6
(w2 + 2z − 2).

We can apply Eisenstein’s criterion to P ∗, since 2 divides all the coefficient
except the coefficient in z2, and 4 do not divide −2.

3. Questions and hypotheses

Hypothesis 1. The limit polynomials P̃m(z) are self-reciprocal, that is

P̃m(z) =

d(m)∑
k=0

akz
k, ak = ad(m)−k.

Corollary. If hypothesis 1 is true then −1 is a root of a polynomial P̃m(z),
whenever d(m) ∈ 2Z+ 1.

We have to mention that most questions below presume or at least require
hypothethis 1 for a particular m.

11
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Definition 16. Consider two configurations of the same length

c1c2 . . . cN and c′1c
′
2 . . . c

′
N ,

with cj , c
′
j ∈ {0, 1, 2}. We say that m′ is conjugate to m and write m′ = m∗ if

c′j = cN+1−j .

Hypothesis 2. The polynomials P̃m(z) and P̃m∗(z) coincide for any pair of
conjugate configurations m and m∗.

It can be observed from table 1 that some polynomials coincide even for non-
conjugate configurations, for example, for m = 10 = 1013 and m′ = 26 = 2223.

Question 3. Which pairs of polynomials P̃m(z) and P̃m′(z) coincide?

Let |m|3 be the length of the 3-adic expansion of m if m ̸∈ 3Z, and let
|m|3 = |3−1m|3 otherwise.

Hypothesis 4. PZ
m(z) = 2·3|m|3 ·P̃m(z) is a polynomial with integer coefficients,

PZ
m = bm,0 + bm,1z + · · ·+ bm,d(m)z

d.

The greatest common divisor of bm,j is 1 or 2.

This is a well-known fact that the set of all weak limits of powers L is
a semigroup. Thus, it is a natural question: can we get a polynomial Pm(z) as
a product of two different elements of L ?

Hypothesis 5. The polynomial P̃m(z) has two or more factors which are not
(z + 1) if and only if (see table 3)

|m|3 ∈ 2Z and m = m∗.

For example, the polynomial

P̃68(z) =
1

81
(3 + 5z + z2)(1 + 5z + 3z2)

corresponds to a symmetric configuration 68 = 21123.

In particular, if hypothesis 5 is true then the roots rj of a polynomial PZ
m(z)

starting with zd + . . . are algebraic integers.

Hypothesis 6. All roots of any P̃m(z) are real numbers (Lee–Yang property).

Remark 17. It follows directly from hypothesis 1 as well as the definition of the

polynomials P̃m(z) that the roots of P̃m(z) must be negative, and they appear
in pairs: r and r−1.
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-1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

Figure 7. Roots of the polynomials Q1094.

111123

111213

112113

-1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

Figure 8. Roots of the polynomials Q122, Q124 and Q130.

Now, if we assume hypotheses 1, 5 and 6 then applying to our polynomials
the transformation

z = κ1(z) = i
z − 1

z + 1
mapping R to the unit circle in the complex plane, we can define the dual poly-
nomials

Qm(w) = P̃m(κ1(z)).

Hypothesis 7. The polynomials Qm(w) are self-reciprocal polynomials having
all roots λj on the unit circle and in the right-half plane:

|λj | = 1, Reλj > 0.

Let us consider, for example, the polynomials

PZ
122(z) = z6 + 26z5 + 120z4 + 192z3 + 120z2 + 26z + 1

PZ
124(z) = z6 + 23z5 + 119z4 + 200z3 + 119z2 + 23z + 1

PZ
130(z) = z6 + 22z5 + 120z4 + 200z3 + 120z2 + 22z + 1,

13
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corresponding to the configuration

122 = 111123, 124 = 111213, 130 = 112113.

The dual polynomials Qm(w) are

Q122(w) =
−2i
486

(
35w6 − 117w5 + 209w4 − 250w3 + 209w2 − 117w + 35

)
Q124(w) =

−i
486

(
77w6 − 232w5 + 415w4 − 496w3 + 415w2 − 232w + 77

)
Q130(w) =

−2i
486

(
39w6 − 117w5 + 205w4 − 250w3 + 205w2 − 117w + 39

)
,

and the root of these polynomials are shown on fig. 8.

Question 8. What is the asymptotic behaviour of the distributions ρm?

Remark. In the proof of theorem 12 we consider, for a given degree d, a set
of polynomials corresponding to configurations

m = 1 0ℓ1 10ℓ2 1 . . . 0ℓd−1 13,

where ones are separated by long sequences of zeroes. These configurations gen-
erate sums ϕ(m) which are reduced to sums of d almost independent random
variables, and, in particular,

P̃m(z) → 1

2d
(1 + z)d, ℓj → ∞.

Thus, it is easy to see that the corresponding distributions ρm converge to the
binomial distribution.

-4 -2 0 2 4

Figure 9. The distributions ρ122, ρ124 and ρ130 and the normal distribution.

Question 9. Is it true that the distributions ρm, centered and scaled, con-
verge to the normal distribution as d(m) → ∞ independently on the structure

of P̃m(z) ? (see fig. 9)
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Hypothesis 10. The first polynomial P̃m(z) of degree d is observed at index

m =
3d−1 + 1

2
.

This means that deg P̃m = d and deg P̃s < d for s < m. Moreover, if m ∈ 2Z
then the corresponding polynomials PZ

m(z) are irreducible (over Q) monic self-
reciprocal polynomials. If m is odd the same is true for (z + 1)−1PZ

m(z). The
roots rj of PZ

m(z) are algebraic integers, moreover, rj ∈ R.

Remark 18. In particular, if hypothesis 10 is true then the following estimate
holds

d(m) ≤ 1 + log3(2m− 1).

Question 11. How d(m) depends on m?

Question 12. Is it true that no one polynomial P̃m(z) divides another polyno-

mials in Q[z], and any P̃m(z) is never a product of different polynomials P̃m′
k
(z)

of smaller degree?

Question 13. Is it true that for any m operator P̃m(T ) is not a product of
different operators Aj ∈ L in the weak closure of powers of Chacon transforma-

tion T̂?

Question 14. Can we find P̃m(z) which is an isolated point in the semigroup

generated by all {P̃m′}, and can we find P̃m(T ) which is an isolated point in L ?

Question 15. Is it true that the set L contains operators
∑

j aj T̂
j , where

inifinitely many aj ̸= 0 ? Is it possible to find among elemets V ∈ L operators
of the form

V = κΘ+
∑
j

aj T̂
j , κ ̸= 0 ?

The following well-known question still has no answer as well.

Question 16. Is Chacon(3) transformation κ-mixing, which means that there
exists V ∈ L such that

V = κΘ+ V2, κ ̸= 0, V2 ̸= 0 ?

Hypothesis 17. There exists a global constant ε0 > 0 such that the following
is true. Among the polynomials Pm(T̂ ) as well as in the set L there is no poly-

nomials
∑

j aj T̂
j satisfying the property |aj+1/aj − 1| < ε0 for any j, whenever

aj+1, aj > 0.

Question 18. How we can describe the entire set L for Chacon(3) transfor-
mation?

15
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4. Appendix: The limit polynomials

Table 1. First 122 limit polynomials P̃m(z)

The columns of this table indicate: the numberm, 3-adic expansion ofm (con-

figuration), and the polynomial P̃m(z). We mark by ∗ the idexes corresponding to
configurations 111 . . . 123. We skip symmetrical configurations like 1123 ∼ 2113
following hypothesis 2 which is verified to be true in this interval.

Configuration m Polynomial P̃m(z)

1∗ = 13 P̃1(z) = P̃3(z) = P̃9(Z) = · · · = 1

2
(1 + z)

2∗ = 23 P̃2(z) = P̃6(z) = · · · = 1

6
(1 + 4z + z2)

4 = 113 P̃4(z) =
1

9
(2z2 + 5z + 2)

5∗ = 123 P̃5(z) =
1

18
(z3 + 8z2 + 8z + 1)

8 = 223 P̃8(z) =
1

9
(2z2 + 5z + 2)

10 = 1013 P̃10(z) =
1

54
(13z2 + 28z + 13)

11 = 1023 P̃11(z) =
1

54
(4z3 + 23z2 + 23z + 4)

13 = 1113 P̃13(z) =
1

54
(5z3 + 22z2 + 22z + 5)

14∗ = 1123 P̃14(z) =
1

54
(z4 + 13z3 + 26z2 + 13z + 1)

16 = 1213 P̃16(z) =
1

54
(z4 + 12z3 + 28z2 + 12z + 1)

16
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Configuration m Polynomial P̃m(z)

17 = 1223 P̃17(z) =
1

54
(4z3 + 23z2 + 23z + 4)

20 = 2023 P̃20(z) =
1

54
(z4 + 12z3 + 28z2 + 12z + 1)

23 = 2123 P̃23(z) =
1

54
(5z3 + 22z2 + 22z + 5)

26 = 2223 P̃26(z) =
1

54
(13z2 + 28z + 13)

28 = 10013 P̃28(z) =
1

81
(20z2 + 41z + 20)

29 = 10023 P̃29(z) =
1

162
(13z3 + 68z2 + 68z + 13)

31 = 10113 P̃31(z) =
1

162
(17z3 + 64z2 + 64z + 17)

32 = 10123 P̃32(z) =
1

81
(2z4 + 20z3 + 37z2 + 20z + 2)

34 = 10213 P̃34(z) =
1

162
(4z4 + 39z3 + 76z2 + 39z + 4)

35 = 10223 P̃35(z) =
1

162
(16z3 + 65z2 + 65z + 16)

38 = 11023 P̃38(z) =
1

162
(5z4 + 39z3 + 74z2 + 39z + 5)

40 = 11113 P̃40(z) =
1

81
(3z4 + 20z3 + 35z2 + 20z + 3)

41∗ = 11123 P̃41(z) =
1

162
(z5 + 19z4 + 61z3 + 61z2 + 19z + 1)

17
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Configuration m Polynomial P̃m(z)

43 = 11213 P̃43(z) =
1

162
(z5 + 17z4 + 63z3 + 63z2 + 17z + 1)

44 = 11223 P̃44(z) =
1

81
(2z4 + 20z3 + 37z2 + 20z + 2)

47 = 12023 P̃47(z) =
1

162
(z5 + 16z4 + 64z3 + 64z2 + 16z + 1)

50 = 12123 P̃50(z) =
1

162
(5z4 + 39z3 + 74z2 + 39z + 5)

52 = 12213 P̃52(z) =
1

81
(2z4 + 18z3 + 41z2 + 18z + 2)

53 = 12223 P̃53(z) =
1

162
(13z3 + 68z2 + 68z + 13)

56 = 20023 P̃56(z) =
1

81
(2z4 + 18z3 + 41z2 + 18z + 2)

59 = 20123 P̃59(z) =
1

162
(z5 + 17z4 + 63z3 + 63z2 + 17z + 1)

62 = 20223 P̃62(z) =
1

162
(4z4 + 39z3 + 76z2 + 39z + 4)

68 = 21123 P̃68(z) =
1

81
(3z4 + 20z3 + 35z2 + 20z + 3)

71 = 21223 P̃71(z) =
1

162
(17z3 + 64z2 + 64z + 17)

80 = 22223 P̃80(z) =
1

81
(20z2 + 41z + 20)

82 = 100013 P̃82(z) =
1

486
(121z2 + 244z + 121)

18
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Configuration m Polynomial P̃m(z)

83 = 100023 P̃83(z) =
1

486
(40z3 + 203z2 + 203z + 40)

85 = 100113 P̃85(z) =
1

486
(53z3 + 190z2 + 190z + 53)

86 = 100123 P̃86(z) =
1

486
(13z4 + 121z3 + 218z2 + 121z + 13)

88 = 100213 P̃88(z) =
1

486
(13z4 + 120z3 + 220z2 + 120z + 13)

89 = 100223 P̃89(z) =
1

486
(52z3 + 191z2 + 191z + 52)

91 = 101013 P̃91(z) =
1

486
(56z3 + 187z2 + 187z + 56)

92 = 101023 P̃92(z) =
1

486
(17z4 + 120z3 + 212z2 + 120z + 17)

94 = 101113 P̃94(z) =
1

486
(21z4 + 121z3 + 202z2 + 121z + 21)

95 = 101123 P̃95(z) =
1

486
(4z5 + 61z4 + 178z3 + 178z2 + 61z + 4)

97 = 101213 P̃97(z) =
1

486
(4z5 + 56z4 + 183z3 + 183z2 + 56z + 4)

98 = 101223 P̃98(z) =
1

486
(16z4 + 121z3 + 212z2 + 121z + 16)

100 = 102013 P̃100(z) =
1

243
(8z4 + 60z3 + 107z2 + 60z + 8)

101 = 102023 P̃101(z) =
1

486
(4z5 + 55z4 + 184z3 + 184z2 + 55z + 4)

19
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Configuration m Polynomial P̃m(z)

103 = 102113 P̃103(z) =
1

486
(4z5 + 59z4 + 180z3 + 180z2 + 59z + 4)

104 = 102123 P̃104(z) =
1

243
(10z4 + 60z3 + 103z2 + 60z + 10)

106 = 102213 P̃106(z) =
1

486
(16z4 + 117z3 + 220z2 + 117z + 16)

107 = 102223 P̃107(z) =
1

486
(52z3 + 191z2 + 191z + 52)

110 = 110023 P̃110(z) =
1

486
(17z4 + 117z3 + 218z2 + 117z + 17)

112 = 110113 P̃112(z) =
1

243
(11z4 + 60z3 + 101z2 + 60z + 11)

113 = 110123 P̃113(z) =
1

486
(5z5 + 61z4 + 177z3 + 177z2 + 61z + 5)

115 = 110213 P̃115(z) =
1

486
(5z5 + 59z4 + 179z3 + 179z2 + 59z + 5)

116 = 110223 P̃116(z) =
1

243
(10z4 + 60z3 + 103z2 + 60z + 10)

119 = 111023 P̃119(z) =
1

486
(6z5 + 61z4 + 176z3 + 176z2 + 61z + 6)

121 = 111113 P̃121(z) =
1

486
(7z5 + 65z4 + 171z3 + 171z2 + 65z + 7)

122∗ = 111123 P̃122(z) =
1

486
(z6 + 26z5 + 120z4 + 192z3 + 120z2 + 26z + 1)

20
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Table 2. Several remarkable limit polynomials P̃m(z) for m ≤ 1094.

First occurence of degree d

m = 1 = 13

P̃1(z) = P̃3(z) = P̃9(Z) = · · · = 1

2
(1 + z)

m = 2 = 23

P̃2(z) = P̃6(z) = · · · = 1

6
(1 + 4z + z2)

m = 5 = 123

P̃5(z) =
1

18
(z3 + 8z2 + 8z + 1)

m = 14 = 1123

P̃14(z) =
1

54
(z4 + 13z3 + 26z2 + 13z + 1)

m = 41 = 11123

P̃41(z) =
1

162
(z5 + 19z4 + 61z3 + 61z2 + 19z + 1)

m = 122 = 111123

P̃122(z) =
1

486
(z6 + 26z5 + 120z4 + 192z3 + 120z2 + 26z + 1)

m = 365 = 1111123

P̃365(z) =
1

1458
(z7 + 34z6 + 211z5 + 483z4 + 483z3 + 211z2 + 34z + 1)

m = 1094 = 11111123

P̃1094(z) =
1

4374
(z8 + 43z7 + 343z6 + 1050z5 + 1500z4 + 1050z3 + 343z2 + 43z + 1)
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Similar configurations

m = 122 = 111123

P̃122(z) =
1

486
(z6 + 26z5 + 120z4 + 192z3 + 120z2 + 26z + 1)

m = 124 = 111213

P̃124(z) =
1

486
(z6 + 23z5 + 119z4 + 200z3 + 119z2 + 23z + 1)

m = 130 = 112113

P̃130(z) =
1

486
(z6 + 22z5 + 120z4 + 200z3 + 120z2 + 22z + 1)

m = 148 = 121113

P̃148(z) =
1

486
(z6 + 23z5 + 119z4 + 200z3 + 119z2 + 23z + 1)

m = 202 = 211113

P̃202(z) =
1

486
(z6 + 26z5 + 120z4 + 192z3 + 120z2 + 26z + 1)

Irreducible up to a root (−1) cubic polynomials

m = 91 = 101013

P̃91(z) =
1

486
(56z3 + 187z2 + 187z + 56)

m = 253 = 1001013

P̃253(z) =
1

1458
(173z3 + 556z2 + 556z + 173)

m = 739 = 10001013

P̃739(z) =
1

4374
(524z3 + 1663z2 + 1663z + 524)
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m = 757 = 10010013

P̃757(z) =
1

4374
(533z3 + 1654z2 + 1654z + 533)

Table 3. Non-irreducible polynomials P̃m(z) for m ≤ 244
(up to a root −1).

Index m Configuration Factorization of P̃m(z)

4 113 P̃4(z) =
1

9
(2 + z)(1 + 2z)

8 223 P̃8(z) =
1

9
(2 + z)(1 + 2z)

28 10013 P̃28(z) =
1

81
(5 + 4z)(4 + 5z)

40 11113 P̃40(z) =
1

81
(3 + 5z + z2)(1 + 5z + 3z2)

52 12213 P̃52(z) =
1

81
(2 + 6z + z2)(1 + 6z + 2z2)

56 20023 P̃56(z) =
1

81
(2 + 6z + z2)(1 + 6z + 2z2)

68 21123 P̃68(z) =
1

81
(3 + 5z + z2)(1 + 5z + 3z2)

80 22223 P̃80(z) =
1

9
(5 + 4z)(4 + 5z)

244 1111113 P̃244(z) =
1

729
(14 + 13z)(13 + 14z)
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