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Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Let T be an invertible measure preserving transformation of the
standard Lebesgue space (X ,A, µ), X = [0,1].
The Koopman operator

T̂ : L2(X , µ)→ L2(X , µ) : f (x) 7→ f (Tx)

Spectral invariants of T are the
I maximal spectral type σ on S1 = {z ∈ C : |z| = 1} and the
I multiplicity functionM(z) : S1 → N t {∞}.

Usually we study T̂ on the space of functions with zero mean.

Ergodic flows and some problems in analysis Moscow State University



Spectral theory of dynamical systems Applications to analysis

Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Ergodic flows and some problems in analysis Moscow State University



Spectral theory of dynamical systems Applications to analysis

Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Ergodic flows and some problems in analysis Moscow State University



Spectral theory of dynamical systems Applications to analysis

Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Ergodic flows and some problems in analysis Moscow State University



Spectral theory of dynamical systems Applications to analysis

Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Ergodic flows and some problems in analysis Moscow State University



Spectral theory of dynamical systems Applications to analysis

Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Let {T t}t∈R be an ergodic flow on (X ,A, µ).

We associate with {T t} a unitary representation

T̂ t : f (x) 7→ f (Tx)

The measure of maximal spectral type for {T t}
is a Borel measure on R̂ = R.
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Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Examples:
I Bernoulli maps: σ = λ and the multiplicity =∞
I Transformation with pure point spectrum: spectrum is

simple, and σ is a distribution on a discrete subgroup in S1

(example: irrational rotation)

Problem (Banach). Is the following true?
There exists a measure preserving transformation T with
simple spectrum and σ = λ?
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Singular measures

Riemann (Göttingen, 1854):
Let f (x) be a Riemann integrable function on [0,1].
Then its Fourier coeffitions

f̂ (n) =
∫ 1

0
e−2πi nx f (x)dx → 0, n→∞.

Lebesgue (1903):
Extension to all functions in L1([0,1], λ).
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Singular measures

This result is represented in terms of absolutely continuous
measures. Let σ be a Borel measure on [0,1]. Then

σ = σac + σd + σs,

where

dσac = p(x)dλ, σd =
∞∑

j=1

cjδxj ,

and

σs ⊥ λ, [0,1] = E1 t E2, λ(E1) = σs(E2) = 1.
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Menshov–Rajchman measures

A measure σ is called Menshov–Rajchman measure if σ̂(t)→ 0
as t →∞, where

σ̂(t) =
∫ 1

0
e−2πi tx dσ(x)

Notice that σ̂d =
∑∞

j=1 cjδxj is an almost periodic function and is
non-Menshov–Rajchmann.
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Menshov–Rajchman measures

Question. Which singular measures are Menshov–Rajchman
measures?

Menshov (1916):
I For Cantor–Lebeasgue middle-thirds measure
µ̂CL(n) = µ̂CL(3n)

I First example of Menshov–Rajchman measures
(modification of the Cantor middle-thirds construction)
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Menshov–Rajchman measures

Theorem. There exist Menshov–Rajchman measures with the
following rate of Fourier coefficient decay:

σ̂(n) = O(n−1/2+ε).

I Wiener and Wintner (1938)
I Schaffer (1939)
I Salem (1943 – 1950)
I Ivashev-Musatov (1956)
I . . .
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Salem measures from ergodic flows

Symbolic dynamics approach

Let us define rotation operator ρα on finite words:
If W = W(1)W(2) and the length of the first subword |W(1)| = α
then we set ρα(W ) = W(2)W(1).

Observe that in other terms ρα cuts the word W after α
positions and then substitutes W(1) and W(2).

This kind of transform is a discrete variation of the well-known
interval exchange map.
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Salem measures from ergodic flows

Symbolic dynamics approach

Starting from a word W0 define Wn is repeated qn times, next,
each copy is rotated by given value of positions αn,y , and the
next word in the sequence is given by the formula

Wn+1 = ραn,0(Wn)ραn,1(Wn) . . . ραn,qn−1(Wn).

For example, if W1 is the word “CAT”, q1 = 6 and
(ρα1,0 , ρα1,1 , . . . , ρα1,qn−1) = (0,1,2,2,0,1),
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Salem measures from ergodic flows

Symbolic dynamics approach
We have

CAT 7→ CAT.ATC.TCA.TCA.CAT.ATC = W2

(points “.” are used to distinguish groups of symbols). At the
next step we rotate the word W2. The following table shows
positions of cutting (×)

CATATCT×CATCACATATC

CATA×TCTCATCACATATC

CATATCTCATC×ACATATC

used to create the word

W3 = CATCACATATC | CATATCT . TCTCATCACATATC | CATA . ACATATC | CATATCTCATC . . .
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Salem measures from ergodic flows

Ergodic construction of Salem measures

Theorem (joint work with El H. El Abdalaoui).
There exist measure preserving transformations T having
simple spectrum such that the spectral type measure σ is
purely singular measure with the strictly encreasing distribution
function satisfying

σ̂(n) = O(n−1/2+ε) for any ε > 0.

In particular σ ∗ σ � λ.
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Ergodic flows

The approach can be extended to the case of flows.

Theorem. There exist ergodic flows T t with simple spectrum
such that for a dense set of functions f spectral measures σf
satisfies

σ̂f (n) = O(n−1/2+ε) for any ε > 0.
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Salem measures from ergodic flows

Ergodic group actions
Let us extend this construction to ergodic actions given by a
pair of commuting flows T tSu = SuT t .

Theorem. There exist commuting flows T t and Su with
invariant measure such that for a dense set of functions f
spectral measures σf satisfies

σ̂(n) = O(n−1+ε) for any ε > 0.

This measure have the following geometric properties:
I σ ∗ σ << λ(2) on R2

I projection π`(σ) << λ for any line `

Ergodic flows and some problems in analysis Moscow State University



Spectral theory of dynamical systems Applications to analysis

Salem measures from ergodic flows

Ergodic group actions
Let us extend this construction to ergodic actions given by a
pair of commuting flows T tSu = SuT t .

Theorem. There exist commuting flows T t and Su with
invariant measure such that for a dense set of functions f
spectral measures σf satisfies

σ̂(n) = O(n−1+ε) for any ε > 0.

This measure have the following geometric properties:
I σ ∗ σ << λ(2) on R2

I projection π`(σ) << λ for any line `

Ergodic flows and some problems in analysis Moscow State University



Spectral theory of dynamical systems Applications to analysis

Salem measures from ergodic flows

Spectral invariants of dynamical systems

Ergodic flows and some problems in analysis Moscow State University



Spectral theory of dynamical systems Applications to analysis

Salem measures from ergodic flows

Spectral invariants of dynamical systems

Ergodic flows and some problems in analysis Moscow State University



Spectral theory of dynamical systems Applications to analysis

Salem measures from ergodic flows

Thank you!
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