Ergodic flows and some problems in analysis

Alexander Prikhod'ko

Department of Mechanics and Mathematics Moscow State University

Moscow, 07.12.2011

Ergodic flows and some problems in analysis

Moscow State University

э

Let *T* be an invertible measure preserving transformation of the standard Lebesgue space $(X, A, \mu), X = [0, 1]$. The Koopman operator

$$\widehat{T}$$
: $L^2(X,\mu) \to L^2(X,\mu)$: $f(X) \mapsto f(TX)$

Spectral invariants of T are the

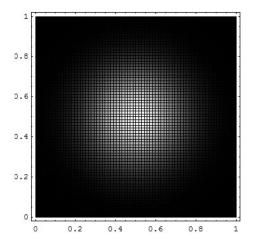
- maximal spectral type σ on $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ and the
- multiplicity function $\mathcal{M}(z)$: $S^1 \to \mathbb{N} \sqcup \{\infty\}$.

Usually we study \hat{T} on the space of functions with zero mean.

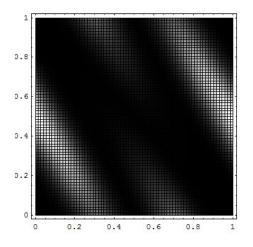
pplications to analysis

Spectral theory of dynamical systems

Spectral invariants of dynamical systems

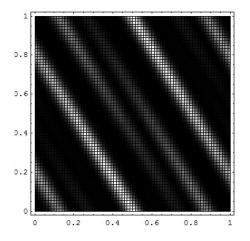


Ergodic flows and some problems in analysis



Spectral theory of dynamical systems

Spectral invariants of dynamical systems



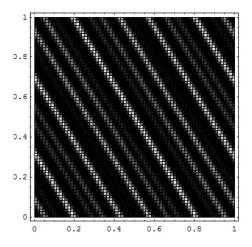
・ロト・雪・・雪・・雪・ うへぐ

Ergodic flows and some problems in analysis

Moscow State University

Spectral theory of dynamical systems

Spectral invariants of dynamical systems



Let $\{T^t\}_{t\in\mathbb{R}}$ be an ergodic flow on (X, \mathcal{A}, μ) .

We associate with $\{T^t\}$ a unitary representation

$$\widehat{T}^t$$
: $f(x) \mapsto f(Tx)$

The measure of maximal spectral type for $\{T^t\}$ is a Borel measure on $\widehat{\mathbb{R}} = \mathbb{R}$.

・ロト ・ 日本 ・ 日本 ・ 日本

Examples:

- Bernoulli maps: $\sigma = \lambda$ and the multiplicity $= \infty$
- Transformation with pure point spectrum: spectrum is simple, and σ is a distribution on a discrete subgroup in S¹ (example: irrational rotation)

Problem (Banach). Is the following true? There exists a measure preserving transformation T with simple spectrum and $\sigma = \lambda$?

Examples:

- Bernoulli maps: $\sigma = \lambda$ and the multiplicity $= \infty$
- Transformation with pure point spectrum: spectrum is simple, and σ is a distribution on a discrete subgroup in S¹ (example: irrational rotation)

Problem (Banach). Is the following true? There exists a measure preserving transformation T with simple spectrum and $\sigma = \lambda$?

ロトス得トスヨトスヨト

Singular measures on ${\mathbb R}$

Singular measures

Riemann (Göttingen, 1854): Let f(x) be a Riemann integrable function on [0, 1]. Then its Fourier coeffitions

$$\widehat{f}(n) = \int_0^1 e^{-2\pi i \, nx} f(x) \, dx \to 0, \quad n \to \infty.$$

Lebesgue (1903): Extension to all functions in $L^1([0, 1], \lambda)$.

Singular measures on $\mathbb R$

Singular measures

Riemann (Göttingen, 1854): Let f(x) be a Riemann integrable function on [0, 1]. Then its Fourier coeffitions

$$\widehat{f}(n) = \int_0^1 e^{-2\pi i \, nx} f(x) \, dx \to 0, \quad n \to \infty.$$

Lebesgue (1903): Extension to all functions in $L^1([0, 1], \lambda)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Singular measures

This result is represented in terms of absolutely continuous measures. Let σ be a Borel measure on [0, 1]. Then

$$\sigma = \sigma_{ac} + \sigma_d + \sigma_s,$$

where

$$d\sigma_{ac} = p(x)d\lambda, \qquad \sigma_d = \sum_{j=1}^{\infty} c_j \delta_{x_j},$$

 \sim

and

$$\sigma_{s} \perp \lambda, \qquad [0,1] = E_1 \sqcup E_2, \quad \lambda(E_1) = \sigma_{s}(E_2) = 1.$$

э

・ロト ・ 日本 ・ 日本 ・ 日本

A measure σ is called *Menshov–Rajchman measure* if $\hat{\sigma}(t) \rightarrow 0$ as $t \rightarrow \infty$, where

$$\widehat{\sigma}(t) = \int_0^1 e^{-2\pi i tx} d\sigma(x)$$

Notice that $\hat{\sigma}_d = \sum_{j=1}^{\infty} c_j \delta_{x_j}$ is an almost periodic function and is non-Menshov–Rajchmann.

э

・ロト ・ 日本 ・ 日本 ・ 日本

A measure σ is called *Menshov–Rajchman measure* if $\hat{\sigma}(t) \rightarrow 0$ as $t \rightarrow \infty$, where

$$\widehat{\sigma}(t) = \int_0^1 e^{-2\pi i tx} \, d\sigma(x)$$

Notice that $\hat{\sigma}_d = \sum_{j=1}^{\infty} c_j \delta_{x_j}$ is an almost periodic function and is non-Menshov–Rajchmann.

Question. Which singular measures are Menshov–Rajchman measures?

Menshov (1916):

- ► For Cantor–Lebeasgue middle-thirds measure $\widehat{\mu}_{CL}(n) = \widehat{\mu}_{CL}(3n)$
- First example of Menshov–Rajchman measures (modification of the Cantor middle-thirds construction)

Question. Which singular measures are Menshov–Rajchman measures?

Menshov (1916):

- ► For Cantor–Lebeasgue middle-thirds measure $\hat{\mu}_{CL}(n) = \hat{\mu}_{CL}(3n)$
- First example of Menshov–Rajchman measures (modification of the Cantor middle-thirds construction)

(4月) (1日) (日)

Theorem. There exist Menshov–Rajchman measures with the following rate of Fourier coefficient decay:

$$\widehat{\sigma}(n) = O(n^{-1/2+\varepsilon}).$$

- Wiener and Wintner (1938)
- Schaffer (1939)
- ► Salem (1943 1950)
- Ivashev-Musatov (1956)

▶ ...

э

Theorem. There exist Menshov–Rajchman measures with the following rate of Fourier coefficient decay:

$$\widehat{\sigma}(n) = O(n^{-1/2+\varepsilon}).$$

- Wiener and Wintner (1938)
- Schaffer (1939)
- Salem (1943 1950)
- Ivashev-Musatov (1956)

▶ ...

- 4 同 ト 4 回 ト

Symbolic dynamics approach

Let us define *rotation operator* ρ_{α} on finite words: If $W = W_{(1)}W_{(2)}$ and the length of the first subword $|W_{(1)}| = \alpha$ then we set $\rho_{\alpha}(W) = W_{(2)}W_{(1)}$.

Observe that in other terms ρ_{α} cuts the word *W* after α positions and then substitutes $W_{(1)}$ and $W_{(2)}$.

This kind of transform is a discrete variation of the well-known *interval exchange map*.

Symbolic dynamics approach

Let us define *rotation operator* ρ_{α} on finite words: If $W = W_{(1)}W_{(2)}$ and the length of the first subword $|W_{(1)}| = \alpha$ then we set $\rho_{\alpha}(W) = W_{(2)}W_{(1)}$.

Observe that in other terms ρ_{α} cuts the word *W* after α positions and then substitutes $W_{(1)}$ and $W_{(2)}$.

This kind of transform is a discrete variation of the well-known *interval exchange map*.

ロトス得とくほとくほと

Symbolic dynamics approach

Starting from a word W_0 define W_n is repeated q_n times, next, each copy is rotated by given value of positions $\alpha_{n,y}$, and the next word in the sequence is given by the formula

$$W_{n+1} = \rho_{\alpha_{n,0}}(W_n)\rho_{\alpha_{n,1}}(W_n)\dots\rho_{\alpha_{n,q_{n-1}}}(W_n).$$

For example, if W_1 is the word "CAT", $q_1 = 6$ and $(\rho_{\alpha_{1,0}}, \rho_{\alpha_{1,1}}, \dots, \rho_{\alpha_{1,q_n-1}}) = (0, 1, 2, 2, 0, 1),$

くロト (得) (目) (日)

Salem measures from ergodic flows

Symbolic dynamics approach We have

```
CAT \mapsto CAT.ATC.TCA.TCA.CAT.ATC = W_2
```

(points "." are used to distinguish groups of symbols). At the next step we rotate the word W_2 . The following table shows positions of cutting (×)

CATATCT_×CATCACATATC CATA_×TCTCATCACATATC CATATCTCATC_×ACATATC

used to create the word

 $W_3= ext{catcacatatc} \mid ext{catatct}$. Teterateacatate | cata . Acatate | catateteacatate . . .

-

Ergodic construction of Salem measures

Theorem (joint work with El H. El Abdalaoui). There exist measure preserving transformations *T* having simple spectrum such that the spectral type measure σ is purely singular measure with the strictly encreasing distribution function satisfying

$$\widehat{\sigma}(n) = O(n^{-1/2+\varepsilon}) \quad ext{for any } \varepsilon > 0.$$

In particular $\sigma * \sigma \ll \lambda$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Salem measures from ergodic flows

Ergodic flows

The approach can be extended to the case of flows.

Theorem. There exist ergodic flows T^t with simple spectrum such that for a dense set of functions *f* spectral measures σ_f satisfies

$$\widehat{\sigma}_f(n) = O(n^{-1/2+arepsilon}) \quad ext{for any } arepsilon > 0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Ergodic group actions

Let us extend this construction to ergodic actions given by a pair of commuting flows $T^t S^u = S^u T^t$.

Theorem. There exist commuting flows T^t and S^u with invariant measure such that for a dense set of functions f spectral measures σ_f satisfies

$$\widehat{\sigma}(n) = O(n^{-1+\varepsilon}) \text{ for any } \varepsilon > 0.$$

This measure have the following geometric properties:

•
$$\sigma * \sigma << \lambda_{(2)}$$
 on \mathbb{R}^2

• projection $\pi_{\ell}(\sigma) << \lambda$ for any line ℓ

< ロト < 回 ト < 三 ト < 三 ト

Ergodic group actions

Let us extend this construction to ergodic actions given by a pair of commuting flows $T^t S^u = S^u T^t$.

Theorem. There exist commuting flows T^t and S^u with invariant measure such that for a dense set of functions f spectral measures σ_f satisfies

$$\widehat{\sigma}(n) = O(n^{-1+\varepsilon}) \text{ for any } \varepsilon > 0.$$

This measure have the following geometric properties:

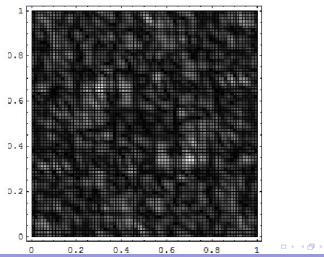
•
$$\sigma * \sigma << \lambda_{(2)}$$
 on \mathbb{R}^2

• projection $\pi_{\ell}(\sigma) \ll \lambda$ for any line ℓ

・ロット (雪) (小田) (日)

Salem measures from ergodic flows

Spectral invariants of dynamical systems

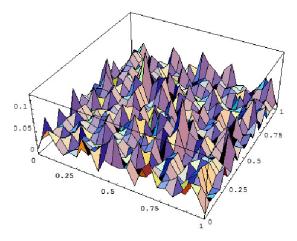


Ergodic flows and some problems in analysis

Moscow State University

Salem measures from ergodic flows

Spectral invariants of dynamical systems



Ergodic flows and some problems in analysis

Spectral theory of dynamical systems

Salem measures from ergodic flows

Applications to analysis

Thank you!

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Ergodic flows and some problems in analysis

Moscow State University