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Littlewood-type polynomials: Flatness phenomenon

Polynomials with Littlewood-type
coefficient constraints

Definition. A complex polynomial

P(z) =
1√

n + 1

n∑
k=0

akzk ∈ C[z]

is called unimodular if |ak | ≡ 1.

Definition. A polynomial P(z) is called ε-ultraflat if

∀z ∈ S1 ∣∣|P(z)| − 1
∣∣ < ε.
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Littlewood-type polynomials: Flatness phenomenon

Flatness phenomenon

Polynomial with random coefficients
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Littlewood-type polynomials: Flatness phenomenon

Flatness phenomenon

Gaussian polynomial P(z) = 1√
n

∑ n−1
2

k=− n−1
2

an zn, an = e2πi k2
2n

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Littlewood-type polynomials: Flatness phenomenon

Polynomials with Littlewood-type
coefficient constraints

Gn =
{

P(z) = 1√
n+1

n∑
k=0

akzk : |ak | ≡ 1
}
.

Ln =
{

P(z) = 1√
n+1

n∑
k=0

akzk : ak ∈ {−1, 1}
}
⊂ Gn.

Mn =
{

P(z) = 1√
n
(zω1 + zω2 + . . .+ zωn ) : ωj ∈ Z, ωj < ωj+1

}
.
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Littlewood-type polynomials: Flatness phenomenon

Littlewood’s flatness problem

Question (Littlewood, 1966). Is the following true?
For any ε > 0 there exists an ε-ultraflat polynomial P(z) ∈ Gn,
n ≥ 1.

Theorem (Kahane, 1980). The answer is "yes" with the speed
of convergence

εn = O(n−1/17
√

ln n).

Question (open ).
Is it possible to find an ultraflat polynomial in Ln?
Is it possible to find an Lp-flat polynomial inMn?
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Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Let T be an invertible measure preserving transformation of the
standard Lebesgue space (X ,A, µ), X = [0,1].
The Koopman operator

T̂ : L2(X , µ)→ L2(X , µ) : f (x) 7→ f (Tx)

Spectral invariants of T are the
I maximal spectral type σ on S1 = {z ∈ C : |z| = 1} and the
I multiplicity functionM(z) : S1 → N t {∞}.

Usually we study T̂ on the space of functions with zero mean.
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Spectral theory of dynamical systems

Spectral invariants of dynamical systems

Examples:
I Bernoulli maps: σ = λ and the multiplicity =∞
I Transformation with pure point spectrum: spectrum is

simple, and σ is a distribution on a discrete subgroup in S1

(example: irrational rotation)

Problem (Banach). Is the following true?
There exists a measure preserving transformation T with
simple spectrum and σ = λ?
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Spectral theory of dynamical systems

Banach and Kirillov problems

Banach question: reformulation
(closer to the original version).

Is the following true? There exists a measure preserving
transformation T and an element ξ ∈ L2(X , µ) such that
T̂ jξ ⊥ T̂ kξ and {T̂ jξ} generate the entire L2(X , µ).

Question (Kirillov, 1967). Given an Abelian group G is it
possible to find a G-action with simple Lebesgue spectrum?
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Spectral theory of dynamical systems

Answer to Banach problems for R

Answer to Banach (Kirillov) problem is positive for group R.

Theorem (P., 2009). There exists a measure preserving flow
on a probability space having Lebesgue spectrum
of multiplicity one.

The method involves special properties of R as a field, and
cannot be directly applied to different Abelian groups.
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Spectral theory of dynamical systems

Rank one transformations: Symbolic definition

Any rank one transformation can be described in the following
way using the language of symbolic dynamics.

Starting from a word Wn0 consider the sequence of words Wn
given by

Wn+1 = Wn1sn,0Wn1sn,1Wn1sn,2 . . .Wn1sn,qn−1 ,

where symbol “1” is used to create spacers between words,
and parameters sn,1 are fixed in advance.
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Spectral theory of dynamical systems

Generalized Riesz products

Let us define polynomials

Pn(z) =
1
√

qn

qn−1∑
y=0

zωn(y),

where
ωn(y) = yhn + sn,0 + . . .+ sn,y−1.

If Pn(z) are generated by some rank one map, then
P1(z) · · ·Pn(z) always belongs toMNn .
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Spectral theory of dynamical systems

Generalized Riesz products

The spectral measure σf of a function f ∈ L2(X , µ)
constant on the levels of a tower with index n0 is given
(up to a constant multiplier) by the infinite product

σf = |̂f(n0)|
2
∞∏

n=n0

|Pn(z)|2,

converging in the weak topology.

Question. Is it possible to construct flat polynomials Pn(z)
compatible with some rank one dynamical system?
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Exponential staircase sums

Flat exponential sums with coefficients in {0,1}

MR
q =

P(t) = 1√
q

q−1∑
y=0

e2πi tω(y) : ω(y) ∈ R

 .

Theorem. The answer is "yes" in the classMR
q .

For any 0 < a < b and ε > 0 there exists a sum P(t) ∈Mq
which is compact ε-flat both in L1(a,b) and L2(a,b),∥∥∥|P(t)

∣∣∣
(a,b)
| − 1

∥∥∥
1
< ε,
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Exponential staircase sums

Flat exponential sums with coefficients in {0,1}

and the sums P(t) are given by the formula

P(t) =
1
√

q

q−1∑
y=0

e2πi tω(y),

where
ω(y) = m

q
β2 eβy/q,

with appropriate choice of m > 0, β−1 ∈ N and q ranging over a
set Qε,a,b(β, ε,m) of positive density in Z.
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Exponential staircase sums

Exponential staircase flow

We construct a rank one flow with the following parameters:
I qn is the number of subcolumns
I spacers sn,y = ωn(y + 1)− ωn(y)− hn

I ωn(y) = µn
qn

β2
n

e βny/qn , hn =
µn

βn

µn →∞ (slowest), βn → 0, qn →∞ (fastest).

Theorem. With certain choice of parameters µn, βn and qn the
rank one flow given by the exponential staircase construction
has Lebesgue spectral type.
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Exponential staircase sums

Exponential staircase flow generated by ω(y) = q
βeβy/q

“. . . though careful examination had shown
that the height of the steps steadily decreased
with the rising gravity. The stair had apparently
been designed so that the effort required
to climb it was more or less constant at every
point in its long curving sweep. . . ”

Arthur C. Clarke, Rendezvous with Rama
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Exponential staircase sums

Exponential sums: Van der Corput’s method

Van der Corput’s method – The concept.
We can estimate S as follows:

S =
∑

a<k<β

1√
|f ′′(yk )|

e2πi(f (yk )−kyk+1/8) + E ,

where yk are solutions of the equation

f ′(yk ) = k , where k ∈ Z,

and α = f ′(a), β = f ′(b).

Points yk are called stationary phases for the function f (y).
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Physical background

Physical background: Schrödinger equation

Let H(p) = p2

2m , and consider equation for a free particle

i~
∂

∂t
ψ = − ~2

2m
∂2ψ

∂x2 ,

de Broigle wave

ψ(x , t) = exp
(

p0x − ωpt
~

)
, ωp = H(p),

and the group velocity p0 given by p0 − H ′(p) = 0.

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Physical background

Fundamental solution on R
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Physical background

Free quantum particle on a compact space

Remark that the sum P(t) is connected to a quantum
dynamical system given on T by equation

i
∂

∂t
ψ = Hψ,

with

H = ω

(
−i

∂

∂x

)
,

and P = ψ̂.
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Physical background

Stationary phase dynamics

Our sum P(t) generates a family of stationary phases yk (t)
depending on t ,

P(t) =
1
√

q

q−1∑
y=0

e2πi tω(y),

given by the equation

tω′(yk (t)) = k ,

and the law of evolution for yk (t) in some cases is expressed by
a dynamical system ẏ = v(t , y).
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Physical background

Stationary phase dynamics: Example

Quadratic function ω(y) = H0(y) = y2

2q generates yk (t) as
follows:

t · H ′0(yk ) = k , t · yk

q
= k , yk (t) =

kq
t
,

and the dynamical system induced by H0 acts on R as follows:

Rt : x 7→ x
t
, yk (t) = Rtyk (0).

Notice that R is an action of the multiplicative group R+.
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Physical background

Quantum chaos phenomenon
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Physical background

Quantum chaos phenomenon: Rigid case

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Physical background

Stationary phase dynamics: Idea

Ways of constructing flat P(t):
I Searching for special unstable cases of arithmetic nature.

Example: 2mH0(y) = my2/q, 2m ∈ 2Z and q is prime.
I Controlling the dynamics of stationary phases yk (t).

Idea:
(a) The set {tω(yk )} is generally chaotic (e.g. for H0).

Could it be constant for some special choice of ω(y) ?
or

(b) Is it possible to control the distances:
yk+1(t)− yk (t) = const ?
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Physical background

Stationary phase dynamics: Calculation

Let us suppose that d
dt (tω(yk )) = 0, then

ω(yk ) + tω′(yk )ẏk = 0.

Now differentiating the equation tω′(yk ) = k we get

ω′(yk ) + tω′′(yk )ẏk = 0,

therefore
∂

∂y
ω′

ω
= 0,

ω′

ω
= βq−1 = const,

and ω(y) = ω0eβy/q.
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Physical background

Stationary phase dynamics for exponential ω(y)

Observe that ω(y) has expansion (with small parameter β )

ω(y) =
q
β2 +

y
β

+
y2

2q
+ β

y3

6q2 + . . .

Let us associate an R+-action to our ω(y). Solving equation

t · ω′(y) = k = const

we have
t · 1
β

eβy/q = k , yk (t) =
q
β

log
βk
t
,

On Littlewood-type polynomials and applications to spectral theory Moscow State University
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Physical background

Stationary phase dynamics for exponential ω(y)

y(t) = y(0) +
q
β

log t−1,

and the dynamical system St : y(0) 7→ y(t),

St : x 7→ x +
q
β

log t−1

acts by translations of the line R.

Dynamical system observation: St is much less “chaotic”
than Rt .

I R2 acts on 1-periodic functions as hyperbolic map
I and St acts on the same space as rigid rotaion
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Physical background

Illustration to the dynamics

Dynamics of Rt

r r r r
r r r r r r r r
r r r r r r r r r r r r r r r r
r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r
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Physical background

Outline of the proof: Calculation of yk(t)

We see that
yk (t) =

q
β

log
βk
t
,

where the index k ∈ Z ranges over the interval (K0(t),K1(t)),

K0(t) =
t
β
, K1(t) =

t
β

eβ,

K1(t)− K0(t) ∼ t , β → 0, t →∞.

On Littlewood-type polynomials and applications to spectral theory Moscow State University



Littlewood-type polynomials ans sums Applications to dynamical systems Flat exponential sums with coefficients in {0, 1}

Physical background

Outline of the proof: Van der Corput’s method
Applying van der Corput approach we have for t →∞

P(t) =
1√
t

∑
K0(t)<k<K1(t)

e2πi(tω(yk )−kyk+1/8) + E1(t).

Let us calculate the resulting phase function (minus 1/8)

tω(yk )− kyk ≡ −kyk (mod 1),

since
tω(yk ) =

q
β
· tω′(yk ) =

q
β
· k ∈ Z,

if we require that β−1 ∈ Z.
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Applying van der Corput’s method twice
Continuing calculation of the phase function we have

−kyk = −k · q
β

log
βk
t

= x(t)k − q · Ω(k),

where
x(t) =

q
β

log
t
β

do not depend on k , and

Ω(k) =
1
β

k log k

do not depend on t .
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Applying van der Corput’s method twice

Theorem (Poincaré reccurence theorem). Given ε > 0 for a
sequence of q of positive density

−q · Ω(k) ≈ε Ω(k),

for the fixed finite set of k ∈ (K0,K1) ∩ Z.

Here we apply the reccurence theorem to the torus shift on T[t]

T : v 7→ v + Ω.
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Applying van der Corput’s method twice

It can be easily seen that

Ω′(K1(t))− Ω′(K0(t)) = 1 + o(1),

as β → 0 and t →∞, hence, applying again van der Corput
estimate we have

P(t) ≈ 1√
t

∑
K0(t)<k<K1(t)

e2πi (−kyk+1/8) = e2πi A(t) + E2(t),

where E2(t) is Lp-small error term for p = 1 and p = 2.
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Scheme of the approach

Exponential sum with coeffitients {0, 1}
→

Van der Corput’s method (1), reduction: degree q to degree t

→
Quantum free particle on T

→
Dynamical system: R+-action induced by the Hamiltonian ω(y)

→

Dynamical system on T[t] given by a torus shift

→
Van der Corput’s method (2), reduction: degree t to degree 1
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Thank you!
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