On Littlewood-type polynomials and applications to spectral theory of dynamical systems

Alexander Prikhod'ko

Department of Mechanics and Mathematics
Moscow State University

XXIII session dedicated to 110-th Anniversary of I. G. Petrovsky
Moscow, 30.05.2011

Polynomials with Littlewood-type coefficient constraints

Definition. A complex polynomial

$$
P(z)=\frac{1}{\sqrt{n+1}} \sum_{k=0}^{n} a_{k} z^{k} \in \mathbb{C}[z]
$$

is called unimodular if $\left|a_{k}\right| \equiv 1$.
Definition. A polynomial $P(z)$ is called ε-ultraflat if

Polynomials with Littlewood-type coefficient constraints

Definition. A complex polynomial

$$
P(z)=\frac{1}{\sqrt{n+1}} \sum_{k=0}^{n} a_{k} z^{k} \in \mathbb{C}[z]
$$

is called unimodular if $\left|a_{k}\right| \equiv 1$.
Definition. A polynomial $P(z)$ is called ε-ultraflat if

$$
\forall z \in S^{1} \quad| | P(z)|-1|<\varepsilon .
$$

Flatness phenomenon

Polynomial with random coefficients

Flatness phenomenon

Gaussian polynomial $P(z)=\frac{1}{\sqrt{n}} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} a_{n} z^{n}, a_{n}=e^{2 \pi i \frac{k^{2}}{2 n}}$

Polynomials with Littlewood-type coefficient constraints

$$
\mathcal{G}_{n}=\left\{P(z)=\frac{1}{\sqrt{n+1}} \sum_{k=0}^{n} a_{k} z^{k}:\left|a_{k}\right| \equiv 1\right\}
$$

Polynomials with Littlewood-type coefficient constraints

$$
\begin{gathered}
\mathcal{G}_{n}=\left\{P(z)=\frac{1}{\sqrt{n+1}} \sum_{k=0}^{n} a_{k} z^{k}:\left|a_{k}\right| \equiv 1\right\} . \\
\mathcal{L}_{n}=\left\{P(z)=\frac{1}{\sqrt{n+1}} \sum_{k=0}^{n} a_{k} z^{k}: a_{k} \in\{-1,1\}\right\} \subset \mathcal{G}_{n} .
\end{gathered}
$$

Polynomials with Littlewood-type coefficient constraints

$$
\begin{gathered}
\mathcal{G}_{n}=\left\{P(z)=\frac{1}{\sqrt{n+1}} \sum_{k=0}^{n} a_{k} z^{k}:\left|a_{k}\right| \equiv 1\right\} . \\
\mathcal{L}_{n}=\left\{P(z)=\frac{1}{\sqrt{n+1}} \sum_{k=0}^{n} a_{k} z^{k}: a_{k} \in\{-1,1\}\right\} \subset \mathcal{G}_{n} . \\
\mathcal{M}_{n}=\left\{P(z)=\frac{1}{\sqrt{n}}\left(z^{\omega_{1}}+z^{\omega_{2}}+\ldots+z^{\omega_{n}}\right): \omega_{j} \in \mathbb{Z}, \omega_{j}<\omega_{j+1}\right\} .
\end{gathered}
$$

Littlewood's flatness problem

Question (Littlewood, 1966). Is the following true?
For any $\varepsilon>0$ there exists an ε-ultraflat polynomial $P(z) \in \mathcal{G}_{n}$, $n \geq 1$.

Theorem (Kahane, 1980). The answer is "yes" with the speed of convergence

Question (open).
Is it possible to find an ultraflat polynomial in \mathcal{L}_{n} ?
Is it possible to find an $L^{P-f l a t ~ p o l y n o m i a l ~ i n ~} \mathcal{M}_{n}$?

Littlewood's flatness problem

Question (Littlewood, 1966). Is the following true?
For any $\varepsilon>0$ there exists an ε-ultraflat polynomial $P(z) \in \mathcal{G}_{n}$, $n \geq 1$.

Theorem (Kahane, 1980). The answer is "yes" with the speed of convergence

$$
\varepsilon_{n}=O\left(n^{-1 / 17} \sqrt{\ln n}\right)
$$

Question (open).
Is it possible to find an ultraflat polynomial in \mathcal{L}_{n} ?
Is it possible to find an $L^{P-f l a t ~ p o l y n o m i a l ~ i n ~} \mathcal{M}_{n}$?

Littlewood's flatness problem

Question (Littlewood, 1966). Is the following true?
For any $\varepsilon>0$ there exists an ε-ultraflat polynomial $P(z) \in \mathcal{G}_{n}$, $n \geq 1$.

Theorem (Kahane, 1980). The answer is "yes" with the speed of convergence

$$
\varepsilon_{n}=O\left(n^{-1 / 17} \sqrt{\ln n}\right)
$$

Question (open).

Is it possible to find an ultraflat polynomial in \mathcal{L}_{n} ?
Is it possible to find an $L^{P-f l a t ~ p o l y n o m i a l ~ i n ~} \mathcal{M}_{n}$?

Littlewood's flatness problem

Question (Littlewood, 1966). Is the following true?
For any $\varepsilon>0$ there exists an ε-ultraflat polynomial $P(z) \in \mathcal{G}_{n}$, $n \geq 1$.

Theorem (Kahane, 1980). The answer is "yes" with the speed of convergence

$$
\varepsilon_{n}=O\left(n^{-1 / 17} \sqrt{\ln n}\right)
$$

Question (open).

Is it possible to find an ultraflat polynomial in \mathcal{L}_{n} ?
Is it possible to find an L^{p}-flat polynomial in \mathcal{M}_{n} ?

Spectral invariants of dynamical systems

Let T be an invertible measure preserving transformation of the standard Lebesgue space $(X, \mathcal{A}, \mu), X=[0,1]$.
The Koopman operator

$$
\widehat{T}: L^{2}(X, \mu) \rightarrow L^{2}(X, \mu): f(x) \mapsto f(T x)
$$

Spectral invariants of T are the

- maximal spectral type σ on $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ and the
- multiplicity function $\mathcal{M}(z): S^{1} \rightarrow \mathbb{N} \sqcup\{\infty\}$.

Usually we study \widehat{T} on the space of functions with zero mean.

Spectral invariants of dynamical systems

Examples:

- Bernoulli maps: $\sigma=\lambda$ and the multiplicity $=\infty$
- Transformation with pure point spectrum: spectrum is simple, and σ is a distribution on a discrete subgroup in S^{1} (example: irrational rotation)

Problem (Banach). Is the following true?
There exists a measure preserving transformation T with
simple spectrum and $\sigma=\lambda$?

Spectral invariants of dynamical systems

Examples:

- Bernoulli maps: $\sigma=\lambda$ and the multiplicity $=\infty$
- Transformation with pure point spectrum: spectrum is simple, and σ is a distribution on a discrete subgroup in S^{1} (example: irrational rotation)

Problem (Banach). Is the following true?
There exists a measure preserving transformation T with simple spectrum and $\sigma=\lambda$?

Banach and Kirillov problems

Banach question: reformulation

(closer to the original version).
Is the following true? There exists a measure preserving transformation T and an element $\xi \in L^{2}(X, \mu)$ such that $\widehat{T}^{j} \xi \perp \widehat{T}^{k} \xi$ and $\left\{\widehat{T}^{j} \xi\right\}$ generate the entire $L^{2}(X, \mu)$.

Question (Kirillov, 1967). Given an Abelian group G is it possible to find a G-action with simple Lebesgue spectrum?

Banach and Kirillov problems

Banach question: reformulation
(closer to the original version).
Is the following true? There exists a measure preserving transformation T and an element $\xi \in L^{2}(X, \mu)$ such that $\widehat{T}^{j} \xi \perp \widehat{T}^{k} \xi$ and $\left\{\widehat{T}^{j} \xi\right\}$ generate the entire $L^{2}(X, \mu)$.

Question (Kirillov, 1967). Given an Abelian group G is it possible to find a G-action with simple Lebesgue spectrum?

Answer to Banach problems for \mathbb{R}

Answer to Banach (Kirillov) problem is positive for group \mathbb{R}.

Theorem (P., 2009). There exists a measure preserving flow on a probability space having Lebesgue spectrum of multiplicity one.

The method involves special properties of \mathbb{R} as a field, and cannot be directly applied to different Abelian groups.

Answer to Banach problems for \mathbb{R}

Answer to Banach (Kirillov) problem is positive for group \mathbb{R}.

Theorem (P., 2009). There exists a measure preserving flow on a probability space having Lebesgue spectrum of multiplicity one.

The method involves special properties of \mathbb{R} as a field, and cannot be directly applied to different Abelian groups.

Rank one transformations: Symbolic definition

Any rank one transformation can be described in the following way using the language of symbolic dynamics.

Starting from a word $W_{n_{0}}$ consider the sequence of words W_{n} given by

$$
W_{n+1}=W_{n} 1^{s_{n, 0}} W_{n} 1^{s_{n, 1}} W_{n} 1^{s_{n, 2}} \ldots W_{n} 1^{s_{n, q_{n}-1}}
$$

where symbol " 1 " is used to create spacers between words, and parameters $s_{n, 1}$ are fixed in advance.

Generalized Riesz products

Let us define polynomials

$$
P_{n}(z)=\frac{1}{\sqrt{q_{n}}} \sum_{y=0}^{q_{n}-1} z^{\omega_{n}(y)}
$$

where

$$
\omega_{n}(y)=y h_{n}+s_{n, 0}+\ldots+s_{n, y-1} .
$$

If $P_{n}(z)$ are generated by some rank one map, then
$P_{1}(z) \ldots P_{n}(z)$ always belongs to $\mathcal{M}_{N_{n}}$.

Generalized Riesz products

The spectral measure σ_{f} of a function $f \in L^{2}(X, \mu)$ constant on the levels of a tower with index n_{0} is given (up to a constant multiplier) by the infinite product

$$
\sigma_{f}=\left|\widehat{f}_{\left(n_{0}\right)}\right|^{2} \prod_{n=n_{0}}^{\infty}\left|P_{n}(z)\right|^{2}
$$

converging in the weak topology.
Question. Is it possible to construct flat polynomials $P_{n}(z)$ compatible with some rank one dynamical system?

Generalized Riesz products

The spectral measure σ_{f} of a function $f \in L^{2}(X, \mu)$ constant on the levels of a tower with index n_{0} is given (up to a constant multiplier) by the infinite product

$$
\sigma_{f}=\left|\widehat{f}_{\left(n_{0}\right)}\right|^{2} \prod_{n=n_{0}}^{\infty}\left|P_{n}(z)\right|^{2}
$$

converging in the weak topology.
Question. Is it possible to construct flat polynomials $P_{n}(z)$ compatible with some rank one dynamical system?

Flat exponential sums with coefficients in $\{0,1\}$

$$
\mathcal{M}_{q}^{\mathbb{R}}=\left\{\mathcal{P}(t)=\frac{1}{\sqrt{\natural}} \sum_{y=0}^{q-1} e^{2 \pi i t \omega(y)}: \omega(y) \in \mathbb{R}\right\} .
$$

Theorem. The answer is "yes" in the class $\mathcal{M}_{q}^{\mathbb{R}}$.
For any $0<a<b$ and $\varepsilon>0$ there exists a $\operatorname{sum} \mathcal{P}(t) \in \mathcal{M}_{q}$ which is compact ε-flat both in $L^{1}(a, b)$ and $L^{2}(a, b)$,

$$
\left\||\mathcal{P}(t)|_{(a, b)} \mid-1\right\|_{1}<\varepsilon,
$$

Flat exponential sums with coefficients in $\{0,1\}$

and the sums $\mathcal{P}(t)$ are given by the formula

$$
\mathcal{P}(t)=\frac{1}{\sqrt{q}} \sum_{y=0}^{q-1} e^{2 \pi i t \omega(y)}
$$

where

$$
\omega(y)=m \frac{q}{\beta^{2}} e^{\beta y / q},
$$

with appropriate choice of $m>0, \beta^{-1} \in \mathbb{N}$ and q ranging over a set $\mathcal{Q}_{\varepsilon, a, b}(\beta, \varepsilon, m)$ of positive density in \mathbb{Z}.

Exponential staircase flow

We construct a rank one flow with the following parameters:

- q_{n} is the number of subcolumns
- spacers $s_{n, y}=\omega_{n}(y+1)-\omega_{n}(y)-h_{n}$
- $\omega_{n}(y)=\mu_{n} \frac{q_{n}}{\beta_{n}^{2}} e^{\beta_{n} y / q_{n}}, \quad h_{n}=\frac{\mu_{n}}{\beta_{n}}$
$\mu_{n} \rightarrow \infty$ (slowest), $\beta_{n} \rightarrow 0, q_{n} \rightarrow \infty$ (fastest).
Theorem. With certain choice of parameters μ_{n}, β_{n} and q_{n} the rank one flow given by the exponential staircase construction has Lebesgue spectral type.

Exponential staircase flow generated by $\omega(y)=\frac{q}{\beta} e^{\beta y / q}$

". . though careful examination had shown that the height of the steps steadily decreased with the rising gravity. The stair had apparently been designed so that the effort required to climb it was more or less constant at every point in its long curving sweep. .."

Arthur C. Clarke, Rendezvous with Rama

Exponential sums: Van der Corput's method

Van der Corput's method - The concept.
We can estimate S as follows:

$$
S=\sum_{a<k<\beta} \frac{1}{\sqrt{\left|f^{\prime \prime}\left(y_{k}\right)\right|}} e^{2 \pi i\left(f\left(y_{k}\right)-k y_{k}+1 / 8\right)}+\mathcal{E}
$$

where y_{k} are solutions of the equation

$$
f^{\prime}\left(y_{k}\right)=k, \quad \text { where } k \in \mathbb{Z}
$$

and $\alpha=f^{\prime}(a), \beta=f^{\prime}(b)$.
Points y_{k} are called stationary phases for the function $f(y)$.

Physical background: Schrödinger equation

Let $H(p)=\frac{p^{2}}{2 m}$, and consider equation for a free particle

$$
i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}
$$

de Broigle wave

$$
\psi(x, t)=\exp \left(\frac{p_{0} x-\omega_{p} t}{\hbar}\right), \quad \omega_{p}=H(p)
$$

and the group velocity p_{0} given by $p_{0}-H^{\prime}(p)=0$.

Physical background

Fundamental solution on \mathbb{R}

- Graphics -

Free quantum particle on a compact space

Remark that the sum $\mathcal{P}(t)$ is connected to a quantum dynamical system given on \mathbb{T} by equation

$$
i \frac{\partial}{\partial t} \psi=H \psi
$$

with

$$
H=\omega\left(-i \frac{\partial}{\partial x}\right)
$$

and $\mathcal{P}=\hat{\psi}$.

Stationary phase dynamics

Our sum $\mathcal{P}(t)$ generates a family of stationary phases $y_{k}(t)$ depending on t,

$$
\mathcal{P}(t)=\frac{1}{\sqrt{q}} \sum_{y=0}^{q-1} e^{2 \pi i t \omega(y)},
$$

given by the equation

$$
t \omega^{\prime}\left(y_{k}(t)\right)=k,
$$

and the law of evolution for $y_{k}(t)$ in some cases is expressed by a dynamical system $\dot{y}=v(t, y)$.

Stationary phase dynamics: Example

Quadratic function $\omega(y)=H_{0}(y)=\frac{y^{2}}{2 q}$ generates $y_{k}(t)$ as follows:

$$
t \cdot H_{0}^{\prime}\left(y_{k}\right)=k, \quad t \cdot \frac{y_{k}}{q}=k, \quad y_{k}(t)=\frac{k q}{t},
$$

and the dynamical system induced by H_{0} acts on \mathbb{R} as follows:

$$
R^{t}: x \mapsto \frac{x}{t}, \quad y_{k}(t)=R^{t} y_{k}(0) .
$$

Notice that R is an action of the multiplicative group \mathbb{R}_{+}.

Quantum chaos phenomenon

Quantum chaos phenomenon: Rigid case

Stationary phase dynamics: Idea

Ways of constructing flat $\mathcal{P}(t)$:

- Searching for special unstable cases of arithmetic nature. Example: $2 m H_{0}(y)=m y^{2} / q, 2 m \in 2 \mathbb{Z}$ and q is prime.
- Controlling the dynamics of stationary phases $y_{k}(t)$.

Idea:
(a) The set $\left\{t \omega\left(y_{k}\right)\right\}$ is generally chaotic (e.g. for $\left.H_{0}\right)$. Could it be constant for some special choice of $\omega(y)$?
(b) Is it possible to control the distances:

Stationary phase dynamics: Idea

Ways of constructing flat $\mathcal{P}(t)$:

- Searching for special unstable cases of arithmetic nature. Example: $2 m H_{0}(y)=m y^{2} / q, 2 m \in 2 \mathbb{Z}$ and q is prime.
- Controlling the dynamics of stationary phases $y_{k}(t)$.

Idea:
(a) The set $\left\{t \omega\left(y_{k}\right)\right\}$ is generally chaotic (e.g. for $\left.H_{0}\right)$. Could it be constant for some special choice of $\omega(y)$?
or
(b) Is it possible to control the distances:

$$
y_{k+1}(t)-y_{k}(t)=\text { const } ?
$$

Stationary phase dynamics: Calculation

Let us suppose that $\frac{d}{d t}\left(t \omega\left(y_{k}\right)\right)=0$, then

$$
\omega\left(y_{k}\right)+t \omega^{\prime}\left(y_{k}\right) \dot{y}_{k}=0
$$

Now differentiating the equation $t \omega^{\prime}\left(y_{k}\right)=k$ we get

$$
\omega^{\prime}\left(y_{k}\right)+t \omega^{\prime \prime}\left(y_{k}\right) \dot{y}_{k}=0
$$

therefore

$$
\frac{\partial}{\partial y} \frac{\omega^{\prime}}{\omega}=0, \quad \frac{\omega^{\prime}}{\omega}=\beta q^{-1}=\mathrm{const}
$$

and $\omega(y)=\omega_{0} e^{\beta y / q}$.

Stationary phase dynamics for exponential $\omega(y)$

Observe that $\omega(y)$ has expansion (with small parameter β)

$$
\omega(y)=\frac{q}{\beta^{2}}+\frac{y}{\beta}+\frac{y^{2}}{2 q}+\beta \frac{y^{3}}{6 q^{2}}+\ldots
$$

Let us associate an \mathbb{R}_{+}-action to our $\omega(y)$. Solving equation

$$
t \cdot \omega^{\prime}(y)=k=\text { const }
$$

we have

$$
t \cdot \frac{1}{\beta} e^{\beta y / q}=k, \quad y_{k}(t)=\frac{q}{\beta} \log \frac{\beta k}{t},
$$

Stationary phase dynamics for exponential $\omega(y)$

$$
y(t)=y(0)+\frac{q}{\beta} \log t^{-1},
$$

and the dynamical system $S^{t}: y(0) \mapsto y(t)$,

$$
S^{t}: x \mapsto x+\frac{q}{\beta} \log t^{-1}
$$

acts by translations of the line \mathbb{R}.
Dynamical system observation: S^{t} is much less "chaotic" than R^{t}.

- R^{2} acts on 1 -periodic functions as hyperbolic map
- and S^{t} acts on the same space as rigid rotaion

Stationary phase dynamics for exponential $\omega(y)$

$$
y(t)=y(0)+\frac{q}{\beta} \log t^{-1},
$$

and the dynamical system $S^{t}: y(0) \mapsto y(t)$,

$$
S^{t}: x \mapsto x+\frac{q}{\beta} \log t^{-1}
$$

acts by translations of the line \mathbb{R}.
Dynamical system observation: S^{t} is much less "chaotic" than R^{t}.

- R^{2} acts on 1-periodic functions as hyperbolic map
- and S^{t} acts on the same space as rigid rotaion

Illustration to the dynamics

Dynamics of R^{t}

Illustration to the dynamics

Dynamics of R^{t}

Illustration to the dynamics

Dynamics of R^{t}

Illustration to the dynamics

Dynamics of R^{t}

Illustration to the dynamics

Dynamics of S^{t}

Illustration to the dynamics

Dynamics of S^{t}

Illustration to the dynamics

Dynamics of S^{t}

Illustration to the dynamics

Dynamics of S^{t}

Outline of the proof: Calculation of $y_{k}(t)$

We see that

$$
y_{k}(t)=\frac{q}{\beta} \log \frac{\beta k}{t},
$$

where the index $k \in \mathbb{Z}$ ranges over the interval $\left(K_{0}(t), K_{1}(t)\right)$,

$$
\begin{gathered}
K_{0}(t)=\frac{t}{\beta}, \quad K_{1}(t)=\frac{t}{\beta} e^{\beta}, \\
K_{1}(t)-K_{0}(t) \sim t, \quad \beta \rightarrow 0, \quad t \rightarrow \infty .
\end{gathered}
$$

Outline of the proof: Van der Corput's method

Applying van der Corput approach we have for $t \rightarrow \infty$

$$
\mathcal{P}(t)=\frac{1}{\sqrt{t}} \sum_{K_{0}(t)<k<K_{1}(t)} e^{2 \pi i\left(t \omega\left(y_{k}\right)-k y_{k}+1 / 8\right)}+\mathcal{E}_{1}(t)
$$

Let us calculate the resulting phase function (minus $1 / 8$)

$$
t \omega\left(y_{k}\right)-k y_{k} \equiv-k y_{k} \quad(\bmod 1)
$$

since

$$
t \omega\left(y_{k}\right)=\frac{q}{\beta} \cdot t \omega^{\prime}\left(y_{k}\right)=\frac{q}{\beta} \cdot k \in \mathbb{Z}
$$

if we require that $\beta^{-1} \in \mathbb{Z}$.

Applying van der Corput's method twice

Continuing calculation of the phase function we have

$$
-k y_{k}=-k \cdot \frac{q}{\beta} \log \frac{\beta k}{t}=x(t) k-q \cdot \Omega(k)
$$

where

$$
x(t)=\frac{q}{\beta} \log \frac{t}{\beta}
$$

do not depend on k, and

$$
\Omega(k)=\frac{1}{\beta} k \log k
$$

do not depend on t.

Applying van der Corput's method twice

Theorem (Poincaré reccurence theorem). Given $\varepsilon>0$ for a sequence of q of positive density

$$
-q \cdot \Omega(k) \approx_{\varepsilon} \Omega(k)
$$

for the fixed finite set of $k \in\left(K_{0}, K_{1}\right) \cap \mathbb{Z}$.
Here we apply the reccurence theorem to the torus shift on $\mathbb{T}^{[t]}$

$$
T: v \mapsto v+\Omega .
$$

Applying van der Corput's method twice

It can be easily seen that

$$
\Omega^{\prime}\left(K_{1}(t)\right)-\Omega^{\prime}\left(K_{0}(t)\right)=1+o(1)
$$

as $\beta \rightarrow 0$ and $t \rightarrow \infty$, hence, applying again van der Corput estimate we have

$$
\mathcal{P}(t) \approx \frac{1}{\sqrt{t}} \sum_{K_{0}(t)<k<K_{1}(t)} e^{2 \pi i\left(-k y_{k}+1 / 8\right)}=e^{2 \pi i \mathcal{A}(t)}+\mathcal{E}_{2}(t)
$$

where $\mathcal{E}_{2}(t)$ is L^{p}-small error term for $p=1$ and $p=2$.

Scheme of the approach

Exponential sum with coeffitients $\{0,1\}$
\rightarrow
Van der Corput's method (1), reduction: degree q to degree t

$$
\rightarrow
$$

Quantum free particle on \mathbb{T}

$$
\rightarrow
$$

Dynamical system: \mathbb{R}_{+}-action induced by the Hamiltonian $\omega(y)$

$$
\rightarrow
$$

$$
\text { Dynamical system on } \mathbb{T}^{[t]} \text { given by a torus shift }
$$

Van der Corput's method (2), reduction: degree t to degree 1

Thank you!

