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1 Transitions of minimum func-
tions and shock waves

Let F (u, λ) be a smooth family of functions of
u depending on a parameter λ ∈ Rd+1. Then the
function

ϕ(λ) = min
u
F (u, λ)

of the parameter is called the minimum function of
the family F . In general, minimum functions are
not smooth. In some applications

λ = (x, t) ∈ Rd+1

is a point of the space-time — in this case we say
that the discontinuities of F form the world shock,
and the cases d = 2, 3 are the most interesting phys-
ically. At a fixed t0 the discontinuities of F form
the instant shock which is a section of the world
shock with the isochrone t = t0. As t0 varies the
instant shock experiences transitions.

All such possible transitions when F is a typical
family are shown in Fig. 1 (d = 2), Fig. 2 (d = 3)

Figure 1: Singularities of world shocks and transi-
tions of instant shocks in plane

and classified in [1] where the obtained classification
is applied to inviscid irrotational solutions to the
forced Burgers equation:

vt + (v · ∇ ) v = −∇U + ν∆ v
v = ∇ψ
ψ(x, 0) = ϕ0(x)

.

Here x ∈ Rd is a point of the medium, v(x, t) is
the velocity at the point x at the time t, ν > 0

Figure 2: Transitions of instant shocks in space

is the viscosity of the medium, ∇ = (∂x1 , . . . , ∂xd)
is the usual ∇-operator in Rd, and ∆ = ∇ · ∇ is
the Laplacian. The force potential U(x, t) and the
initial condition ψ0 are assumed to be smooth.

Let ϕ be the limit solution as the viscosity van-
ishes. It has the well-known minimum representa-
tion:

ϕ(x, t) = lim
ν→0

ψ(x, t) = min
u
F (u, x, t)

and is called an inviscid solution. For example, in
the unforced case U ≡ 0

F (u, x, t) = ϕ0(x− ut) + t|u|2/2.

Therefore we can apply our classification of sin-
gularities and transitions of shocks to such limit so-
lutions. But not all transitions from Figures 1 and
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2 are realized by inviscid irrotational solutions to
the Burgers equation — the realizable transitions
satisfy the following topological restriction:

A local shock after a transition is contractible (ho-
motopically equivalent to a point). For example, the
triangle from shocks is homotopically a circle but
not a point, hence it cannot appear. The realizable
transitions are shown in Figures 1 and 2 by black
arrows.

Inviscid solutions to the Burgers equation explain
the formation of clusters in the Universe. Let us
consider two-dimensional case shown in Fig. 1. The
linear density of particles is positive on the shock.
However, the natural assumption that triple nodes
are clusters of particles having positive mass is not
correct — it was discovered in [2].

Namely, there are attracting nodes (with three
obtuse angles) and neutral nodes (with an acute
angle). The relative velocities of particles (in the
frame connected with the node) are shown in Fig. 3.
Therefore, a cluster appears and starts growing

Figure 3: Motion of particles around neutral and
attracting nodes

when a neutral node becomes attracting (Fig. 4,
left). If the node becomes neutral again the cluster

Figure 4: Growing (black dots) and stable (white
dots) clusters

leaves it and stops growing (Fig. 4, right).

These observations are implied by the following
results obtained in [2]. It turns out that a minimum
function has a gradient and the ordinary differential
equation ẋ = ∇ϕ defines correctly the limit motion
of particles.

Research plans. To study singularities and
transitions of shocks in gas dynamics. It is a more

complicated problem because the system of partial
differential equations has more than one unknown
function. Singularities of one-dimensional many-
valued barotropic gas flows are investigated in [3].
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2 Fronts of singular Legendrian
submanifolds

Singular Legendrian submanifolds appear in var-
ious areas of Mathematics. For example, the
open swallowtails and open Whitney umbrellas are
well-known in the obstacle problem, and in 1990
V. I. Arnold described a Legendrian submanifold
with non-analytic singularities appearing in short-
wave approximations in some problems of Mathe-
matical Physics. This submanifold is the closure of
the 1-jet graph:

u = x21 log x2, pk = ∂xku, k = 1, . . . , n, (1)

its dimension n ≥ 2.
A universal technique for reducing the fronts of

singular Legendrian submanifolds to normal forms
is developed in [4]. The Lagrangian counterpart of
this technique is developed in [5] and makes possible
to compute normal forms of caustics.

The fronts, their transitions, and caustics of the
Legendrian submanifold (1) are investigated in [6]
and [7].
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3 Graphene, the Dirac equation,
and sub-Lorentzian structures

It turns out that fronts of the singular Legendrian
submanifold (1) appear as the graphs of phases
in semiclassical approximations of solutions to the
massless Dirac equation and describe the motion of
electrons and holes in graphene.

In [8] we consider the fundamental solution to the
stationary two-dimensional massless Dirac equation

[xσ0 + σxp̂x + σyp̂y]ψ(x, y) = h
3
2 δ(x+a, y) w (2)

where a > 0; (x, y) ∈ R2 is a point in the plane;

ψ =

(
ψ1

ψ2

)
: R2 → C2, w =

(
w1

w2

)
∈ C2

are an unknown spinor field and a known spinor
respectively;

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
are Pauli matrices; δ is the Dirac delta-function;
the coefficient x before the matrix σ0 is the poten-
tial energy of a quasiparticle in a constant electric
field; p̂x = −ih ∂x and p̂y = −ih ∂y are momentum
operators; and h > 0 is a small real parameter.

If the limit-absorption principle is satisfied, then
the solution to (2) is unique and describes the sta-
tionary flow of quasiparticles in graphene emitted
with zero energy from a source located at the point
x = −a < 0, y = 0. There is a constant electric
field parallel to the axis x, and the potential en-
ergy in this field of a quasiparticle is U(x, y) = x.
Quasiparticles in graphene (electrons for U < 0 and
holes for U > 0) are fermions with a zero effective
mass and the Fermi velocity vF ≈ 106 mps (effective
speed of light in graphene) but we set vF = 1.

The source described by (2) emits

a
|w1|2 + |w2|2

2

electrons per the unit time. The propagation of
rays is shown in Fig. 5. Rays leaving the source in

Figure 5: Propagation of rays from a point source
in a constant electric field

all directions except one remain in the electron re-
gion. Their envelope has an infinite curvature at the
point O and is a caustic at which the electron den-
sity tends to infinity as h → 0+. The Lagrangian
surface defined by these rays is neither smooth nor
analytic: its normal form found by V. I. Arnold in
1990 contains logarithms.

In [8] we find the explicit asymptotic of the solu-
tion to (1) as h→ 0+ for x > 0:

ψ(x, y) ≈ i(w1 + w2)

2
√

2πA
e−

y2

2hA

(
1
1

)
,

A = π − i log
x

a
.

From the physical point of view, this is the asymp-
totic of the holes formed from the electrons emit-
ted by the source. According to our results, a part
of the electrons proportional to

√
h becomes holes.

These holes are localized along the half-line x > 0,
y = 0 with a characteristic size

√
h and their density

decreases rapidly as y →∞. Our asymptotic works
in the hole region only. At the level of geometric
optics, it is explained by a special ray that breaks
into the hole region and passes far from other rays
that remain in the electron region.

Surprisingly, rays in graphene located in electro-
magnetic field are null-geodesics of a sub-Lorentzian
structure defined by the field. Besides, the graphs
of the phases of semiclassical approximations of so-
lutions to the massless Dirac equation are fronts of
this sub-Lorentzian structure.

Sub-Lorentzian structures defined by electromag-
netic fields in graphene are families of Lorentzian
metrics on distributions of three-dimensional planes
in R4. Such sub-Lorentzian structures and their
fronts are studied in [9] and [10].

Research plans. To compute the semiclassi-
cal asymptotic of the analogous transition electrons
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to holes in electromagnetic field. To construct the
leading centre theory for quasiparticles of graphene
in a strong electromagnetic field.
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4 Sub-Riemannian geometry and
optimal control

A sub-Riemannian structure is a family of Eu-
clidean metrics on a distribution of k-dimensional
planes in Rn. (If k = n we just get a Rieman-
nian structure.) A sub-Riemannian structure nat-
urally defines a control system in Rn — at any
point the admissible velocities form the unit k-di-
mensional disk. Therefore the sub-Riemannian ge-
ometry studies control systems of this special kind.

A curve is called integral if it is tangent to the
distribution at any its point. Any segment of an
integral curve has a length. The distance between
two points is the minimal length of an integral curve
connecting them. (If there are no such curves the
distance is not defined.)

An integral curve is called optimal if the length
of any its segment is equal to the distance between
its ends. The sub-Riemannian sphere of a radius
R > 0 with a centre a ∈ Rn is the set of the ends of
all optimal curves of the length R beginning at a.

An integral curve is called locally optimal if it can
be covered by overlapping optimal curves. The sub-
Riemannian front of a radius R > 0 with a centre
a ∈ Rn is the set of the ends of all locally optimal
curves of the length R beginning at a. (The sub-
Riemannian sphere is a subset of the front.)

Let us fix a point a ∈ Rn. In the Riemannian
case k = n for a small R > 0 the sphere and
front coincide and are diffeomorphic to the standard
(n−1)-dimensional sphere. In the sub-Riemannian

case the situation can be quite different: the well-
known first interesting case of a contact distribu-
tion is shown in Fig. 6. In this case n = 3, k = 2,

Figure 6: Sub-Riemannian front (contact distribu-
tion)

dz = y dx is the distribution, dx2 + dy2 is the met-
ric, and the sub-Riemannian sphere and front are
given by explicit parametric formulas in elementary
functions. Nevertheless, the front is not analytic at
the origin x = y = z = 0.

For other sub-Riemannian structures, being in-
teresting for applications, the singularities of their
spheres and fronts are more complicated. Some-
times the fronts are given by explicit parametric
formulas which contain special functions, but these
formulas do not help to understand what happens
in neighbourhoods of singular points of the fronts.

The general problem is to study singularities of
sub-Riemannian spheres and fronts of small radii.
In [11] and [12] we compute the quasihomogeneous
tangent cones to the sub-Riemannian fronts at non-
analytic points of the spheres for the Martinet dis-
tribution dz = y2 dx/2 in R3 and the Engel distri-
bution in R4. In both cases we consider the flat
metric dx2 + dy2.

Research plans. Presumably the method de-
veloped in [11], [12] can be applied in other cases
as well. The first difficult case is the Martinet dis-
tribution with a non-flat metric.
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