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Spectral invariants

Let T be an invertible measure preserving transformation of the
standard Lebesgue space (X ,A, µ), X = [0,1].
The Koopman operator

T̂ : L2(X , µ) → L2(X , µ) : f (x) 7→ f (Tx)

Spectral invariants of T are the
I maximal spectral type σ on S1 = {z ∈ C : |z| = 1} and the
I multiplicity function M(z) : S1 → N ⊔ {∞}.

Usually we study T̂ on the space of functions with zero mean.
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Rank one transformations

Definition. T is called a rank one transformation if there exist a
sequence of partitions

ξn = {Bn,TBn,T 2Bn, . . . ,T hn−1Bn,En},

identified with Rokhlin towers, such that µ(
∪hn−1

j=0 T jBn) → 1
and for any measurabe set A there exist ξn-measurable sets An
with µ(A △ An) → 0.
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Rank one transformations: Symbolic definition

Any rank one transformation can be consructed in the following
way. Starting from a word Wn0 consider the sequence of words
Wn given by

Wn+1 = Wn1sn,1Wn1sn,2Wn . . .1sn,qn Wn,

where symbol “1” is used to create spacers between words,
and parameters sn,1 are fixed in advance.
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Cutting-and-stacking construction

∞∏
n=1

hn+1

qnhn
< ∞

T 6

Bn

hn levels

spacers sn,y

qn subcolumns
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Rank one systems: Simplicity of spectrum

Lemma (Katok, Stepin). Let U be a unitary operator on a
separable Hilbert space H, and let σ and M(z) be
the spectral type and the multiplicity function of U.
If M(x) ≥ m on a set of positive σ-measure then there exist
m orthogonal vectors f1, . . . , fm such that for any cyclic space
Z ⊆ H and any g1, . . . ,gm ∈ Z , ∥gi∥ ≡ a, the following is true

m∑
i=1

∥fi − gi∥2 ≥ m(1 + a2 − 2a/
√

m)
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A transformation T has simple spectrum, i.e. M(z) ≡ 1, iff
there exists an element f ∈ L2(X , µ) (cyclic vector ) such that

L2(X , µ) = Span({T̂ k f : k ∈ Z}).

In this case σf ∼ σ, where σf is defined by∫
S1

zk dσf =
⟨

T k f , f
⟩
.

Theorem. Both rank one transformations and rank one flows
are ergodic and have simple spectrum.

On spectral properties of iceberg transformations Moscow State University



Spectral invariants and Littlewood’s problem Iceberg transformations Spectral properties

Spectral invariants

Rank one systems: Spectral type

Question. Is the following true: Any rank one transformation
has the spectral type which is singular with respect to the
Lebesgue measure λ on S1?

σf ⊥ λ

Question (Banach). Does there exist an automorphism with
spectral multiplicity 1 and Lebesgue spectral type?
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Generalized Riesz products

Let us define polynomials

Pn(z) =
1

√
qn

qn−1∑
y=0

zωn(y),

where ωn(y) are return times to the base Bn of n-th tower,

ωn(y) = yhn + sn,0 + . . .+ sn,y−1

for an orbit starting at the base Bn+1 of the first subcolumn.
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Generalized Riesz products

The spectral measure σf of a function f ∈ L2(X , µ)
constant on the levels of a tower with index n0 is given
(up to a constant multiplier) by the infinite product

σf = |̂f(n0)|
2

∞∏
n=n0

|Pn(z)|2,

converging in the weak topology.
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Generalized Riesz products

Applications to rank one systems

Theorem (Bourgain, 1993). Ornstein rank one transformations
have singular spectral type.

Theorem (Klemes, 1994). A class of staircase constructions is
of singular spectral type.
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Littlewood polynomials

Polynomials with Littlewood type coefficient constraints

Kn =
{

P(z) = 1√
n+1

n∑
k=0

akzk : |ak | ≡ 1
}
.

Ln =
{

P(z) = 1√
n+1

n∑
k=0

akzk : ak ∈ {−1, 1}
}
.

Mn =
{

P(z) = 1√
n
(zω1 + zω2 + . . .+ zωn) : ωj ∈ Z, ωj < ωj+1

}
.
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Flatness phenomenon

Question (Littlewood, 1966). Is the following true?
For any ε > 0 there exists an ultra-flat polynomial with
unimodular coefficients P(z) ∈ Kn such that

∀z ∈ S1 ∣∣|P(z)| − 1
∣∣ < ε.

Theorem (Kahane, 1980). The answer is "yes" with the speed
of convergence

εn = O(n−1/17
√

ln n).
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Littlewood polynomials

Flatness phenomenon

Question (open).
Is it possible to find an ultra-flat polynomial in Ln?

Question (open).
Is it possible to find an Lp-flat polynomial in Mn?

Notice that polynomials Pn(z) in the generalized Riesz product
generated by rank one transformations are in class Mqn .
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Flat exponential sums with coefficients in {0, 1}

MR
q =

P(t) = 1√
q

q−1∑
y=0

exp(2πi tω(y) : ω(y) ∈ R

 .

Theorem. The answer is "yes" in class MR
q . For any 0 < a < b

and ε > 0 there exists a sum P(t) ∈ Mq which is ε-flat in
L1(a,b) (and L2(a,b)),∥∥∥|P(t)

∣∣∣
(a,b)

| − 1
∥∥∥

1
< ε.
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Littlewood polynomials

Flat exponential sums with coefficients in {0, 1}

And

P(t) =
1
√

q

q−1∑
y=0

exp(2πi tω(y),

ω(y) = m
q
β2 eβy/q,

where m > 0, β−1 ∈ N and q ranges over a set Qε,a,b(β, ε,m)
of positive density in Z.
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Littlewood polynomials

Finite spectral multiplicity

Question. Does there exist an automorphism with finite
spectral multiplicity and absolutely continuous spectral type?

Theorem (Guenais, 1998). Connection between
Littlewood-type problem in Ln (coefficients ±1) and the spectral
properties of Morse cocycles.

Theorem (Downarowicz, Lacroix, 1998). If all continuous
binary Morse systems have singular spectra then the merit
factors of binary words are bounded (the Turyn’s conjecture
holds).
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Rotation operator and IET on finite words

Let us define rotation operator ρα on finite words:

ρα(W(1)W(2)) = W(2)W(1) if |W(1)| = α

Actually, ρα is an interval exchange transformation (IET).

Example: ρ1(CAT) = ATC, ρ2(CAT) = TCA.
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Iceberg map: Symbolic definition

Rotated words concatenation procedure:

Wn+1 = ραn,0(Wn)ραn,1(Wn) . . . ραn,qn−1(Wn).

For example, if W1 is the word “CAT”, q1 = 6 and
(α1,0, α1,1, . . . , α1,q1−1) = (0,1,2,2,0,1) then

CAT 7→ CAT.ATC.TCA.TCA.CAT.ATC = W2

On spectral properties of iceberg transformations Moscow State University



Spectral invariants and Littlewood’s problem Iceberg transformations Spectral properties

Iceberg transformations

Iceberg map: Symbolic definition

At the next step we rotate the word W2.
The following table shows positions of cutting (×)

CATATCT×CATCACATATC

CATA×TCTCATCACATATC

CATATCTCATC×ACATATC

used to create the word

W3 = CATCACATATC |CATATCT . TCTCATCACATATC |CATA . ACATATC |CATATCTCATC
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Iceberg map: Cutting-and-stacking

Suppose now that symbols {C,A,T} correspond to a partition

X = PC ⊔ PA ⊔ PT

and
µ(PC) = µ(PA) = µ(PT) =

1
3
.

Definition. Let us draw all the rotations of the word CAT in a
way used to draw a Rokhlin tower, placing same letters to the
same level. This picture is called iceberg.
The level “C” is called the base level of the iceberg.
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Iceberg
V3

B0

B1

B2

C

A

TV2

T

C

AV1

B−2

B−1

B0

A

T

C

Figure: Iceberg associated with the word CAT
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Iceberg

B0

B1

B2

C

A

T

C

A

T

T

C

A

T

C

A

B−2

B−1

B0

A

T

C

A

T

C

1 5

6 4

3 4

2 3

2 6

1 5
Figure: Poincaré map for the iceberg corresponding to sequence
CAT.ATC.TCA.TCA.CAT.ATC
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Iceberg

The basic idea of iceberg is to guess that a m.p.t. T maps each
elementary set (shown as a square) to the upper set with small
deviation. For example, if we split the column V3 into
letter-marked sets, V = V3,C ⊔ V3,A ⊔ V3,T, then we require:

µ(TV3,C | V3,A) ≈ 1 and µ(TV3,A | V3,T) ≈ 1.

Remark that if levels of the iceberg are B−2,B−1,B0,B1,B2 then
PC = B0, PA = B1 ∪ B−2, PT = B2 ∪ B−1.
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Spectral properties of random iceberg transformation

Theorem. Let T be an iceberg transformation given by uniform
i.i.d. random rotations αn,k , and suppose that qn ≫ hn grows
sufficiently fast. The following properties hold a.s.

(i) T is of 1/4-local rank,
(ii) T has simple spectrum,
(iii) σ ∗ σ ≪ λ, where σ is the spectral type of T̂ and λ is

Lebesgue measure on S1,
(iv) For a dense set of functions f with zero mean ∀ε > 0

⟨T t f , f ⟩ = O(t−1/2+ε).
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Icicle

T
B0

B1

B2

Bh−1

Figure: An icicle is a sequence of disjoint sets {B0,B1, . . . ,Bh−1}
such that Bj+1 ⊆ TBj and Bj ∈ A.
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Iceberg: Formal definition

Definition. A generic iceberg is a sequence of disjoint
measurable sets

I = {B−h+1, . . . ,B−1,B0,B1, . . . ,Bh−1}

such that Bj+1 ⊆ TBj for j ≥ 0 and Bj−1 ⊆ T−1Bj for j ≤ 0.

I is composed of two icicles with common base B0,
one normal (direct) and one reverse, where reverse icicle is
an icicle for T−1.

We will use notation ∪I =
∪

j Bj .
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Cyclic iceberg

C

A

T

C

A

T

C

A

T

Bj−h Bj

Figure: Partition Ī = {Bj ∪ Bj−h} associated with a cyclic iceberg.
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Cyclic iceberg

Definition. Let I be a generic iceberg. We say that I is cyclic if
for any point x ∈ B0 the total number of iterations towards
future and past until leaving the iceberg is equal to h, i.e.
#{j ∈ Z : T jx ∈ Bj} ≡ h. Let us define the cyclic iceberg
partition

Ī = {Bj ∪ Bj−h : j = 0,1, . . . ,h − 1}, (1)

which is evidently refined by I.
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Cyclic iceberg

C C C

A A A

T T T

Figure: Unordered set of copies of the word “CAT” with different
cut points.
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Cyclic iceberg

C3

A3

T3

T2

C2

A2

A1

T1

C1 A1

T1

C1

C3

A3

T3

T2

C2

A2 T2

C2

A2

A1

T1

C1

C3

A3

T3

Figure: Cyclic rotation of a word leads to another choice of the base
set and the letter defined to be the origin.
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Understanding dynamics

Interpretation of dynamics
Illustrating the behaviour of the transformation T we will
gradually add more details to the picture

B0

B1

B2

C

A

T

T

C

A

B−2

B−1

B0

A

T

C
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Understanding dynamics

Interpretation of dynamics

C

A

T

C

A

T

C

A

T

Figure: Jumps under the action of Poincaré mapOn spectral properties of iceberg transformations Moscow State University
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Understanding dynamics

Interpretation of dynamics

Clearly the meaning of Poincarée map is to express the
connection of two thin columns corresponding to a pair of
adjacent rotated copies ρn,y (Wn)ρn,y+1(Wn) which are
subwords of Wn+1.

For example, if this pair is CAT.ATC the Poincarée map sends
the top set in a thin column included in fat column “CAT” to
the bottom set of some thin column in fat column “ATC”.

On spectral properties of iceberg transformations Moscow State University



Spectral invariants and Littlewood’s problem Iceberg transformations Spectral properties

Understanding dynamics

Interpretation of dynamics

Zhn

T

jump

From the point of view of observer watching the coordinate xn in
the homogeneous space Zhn the following occurs: with
probability 1 − ε point xn moves one step forward xn 7→ xn + 1,
and with small probability ε it jumps to any other point in Zhn .
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Understanding dynamics

Interpretation of dynamics

C

A

T

C

A

T

C

A

T

1 5

3 4

2 6

6 4

2 3

1 5

{
{

Figure: Iceberg transformation dynamics.
On spectral properties of iceberg transformations Moscow State University



Spectral invariants and Littlewood’s problem Iceberg transformations Spectral properties

Understanding dynamics

Interpretation of dynamics

It is shown geometrically what happens when we rotate and
concatenate copies of word

W2 = CAT.ATC.TCA.TCA.CAT.ATC.

and after create

W3 = CATCACATATC |CATATCT . TCTCATCACATATC |CATA . ACATATC |CATATCTCATC
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Understanding dynamics

Interpretation of dynamics

At the figure both first and second Poincaré maps are shown,
and we can continue this procedure.

Let us mark the columns containing jumps as grayed.
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Understanding dynamics

Interpretation of dynamics

n = 3 n = 4, . . .

Figure: Grayed colomns contain jumps. If a point x ∈ Bj and if
x is located in the white area (body ) then Tx ∈ Bj+1.
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Iceberg approximation

We say that a measure preserving map T admits iceberg
approximation if given a finite measurable partition associated
with an alphabet A for any ε > 0 there exists a word Wε in the
alphabet A such that for (1 − ε)-fraction of orbits (xn) the
subword of length N(ε) in (xn) starting from x0 is ε-covered by
rotations ρα(Wε) of the word Wα.

Theorem. Iceberg approximation property is a dynamical
invariant.
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Approximation properties

Iceberg approximation

Wn

spacers

Wn

Wn

Id

Wn Wn

ραn,1(Wn)

Wn

IET

ραn,2(Wn) ραn,3(Wn) ραn,4(Wn)

Figure: Comparing rank one and iceberg approximation
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Approximation properties

Iceberg approximation: Local rank 1/4

area ≥ 1
4

h̃ ≥ 1
2h

Figure: Proving 1/4-local rank property.
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Approximation properties

Iceberg approximation: Local rank 1/4

h → ∞

Figure: The area of maximal rectangle fit into the parallelogram
is close to 1/4. Green rectangle corresponds to a Rokhlin subtower
of the iceberg.
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Spectral multiplicity

Simplicity of spectrum

Suppose that the maximal spectral multiplicity m(T ) ≥ 2.
Then there exist functions f1 and f2 such that any cyclic
subspace Z contains elements g1,g2 with the propertiy
∥g1∥ = ∥g2∥ = a, and satisfying

∥f1 − g1∥2 + ∥f2 − g2∥2 ≥ 2(1 + a2 − 2a/
√

2).

We will show that for a class of transformations there exist
a cyclic subspace approximating well both f1 and f2, and
the contradiction will follow.
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Spectral multiplicity

Simplicity of spectrum

Functions fi can be approximatied by Īn0-measurable functions,
and w.l.o.g. we can assume that f1 are f2 are Īn0-measurable,
and Īn-measurable for n ≥ n0.
Letting bn = 1Bn,0 we have

f =
hn−1∑
j=0

f(n)(j)Sjbn =

(hn−1)/2∑
j=−(hn−1)/2

f(n)(j)Sjbn, n ≥ n0,

where by definition SBj = Bj+1 is the operator in L2(Xn)
corresponding to the rotation t 7→ t + 1.
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Spectral multiplicity

Simplicity of spectrum

f

v

v

u

u

f − u and v

Figure: Proving simplicity of spectrum
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Spectral multiplicity

Simplicity of spectrum

Idea. The following way of proving simplity of spectrum one can
call “3/4-strategy”. We approximate function f by the iterations
T jbn of the indicatior of the base level Bn,0, where
j = −(hn − 1)/2, . . . , (hn − 1)/2, on the subset of the phase
space X of measure ≈ 3/4.

Remark that the estimates below used by this approach is not
a priory necessary, but sufficient for simplicity of spectrum.
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Spectral multiplicity

Simplicity of spectrum

We can assume that
∫

f dµ = 0. Consider sets Gn and En of
measure ≈ 3/4 and ≈ 1/4 respectively, where Gn corresponds
to the central area and En is the union of two triangular areas
remote from the base level,

∪In = Gn ∪ En, Gn =

(hn−1)/2∪
j=−(hn−1)/2

Bn,j ,

En =

−(hn−1)/2−1∪
j=−hn+1

Bn,j ∪
hn−1∪

j=(hn−1)/2+1

Bn,j
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Spectral multiplicity

Simplicity of spectrum

The function f is approximated by the function

g =

(hn−1)/2∑
j=−(hn−1)/2

f(n)(j)T jbn

and g can be represented in the following way:

g = f − u + v , f − u = f |Gn , u = fEn ,

and v is uniquely definied from the equation. The meaning of
the function v can be explained as follows.
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Spectral multiplicity

Simplicity of spectrum
Walking from the base of the iceberg under action of T a point
x is moving in the vertical direction, and the value f (T jx) is
recovered by the index of level, namely, f (T jx) = f |Bj ,

T jbn = 1Bn,j + ξj , v =

(hn−1)/2∑
j=−(hn−1)/2

f(n)(j) ξj ,

and

u =

−(hn−1)/2−1∑
j=−hn+1

f(n)(j)1Bj +
hn−1∑

j=(hn−1)/2+1

f(n)(j)1Bj .
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Spectral multiplicity

Simplicity of spectrum

Lemma. Suppose that ⟨u, v⟩ → 0 and ⟨f , v⟩ → 0 as n → ∞
then asymptotically ∥f − g∥2 → 1/2 and ∥g∥ = (1 + o(1))∥f∥.
In particular, T has simple spectrum.

Proof. Assume that f has zero mean and ∥f∥ = 1. Let us notice
that v(x) = u(Φx) for some measure preserving invertible
map Φ, hence, ∥v∥2 = ∥u∥2.

On spectral properties of iceberg transformations Moscow State University



Spectral invariants and Littlewood’s problem Iceberg transformations Spectral properties

Spectral multiplicity

Simplicity of spectrum

We have

a2 = ∥g∥2 = ∥f − u + v∥2 =

= ∥f∥2 + ∥u∥2 + ∥v∥2 − 2 Re ⟨f , u⟩+ 2 Re ⟨f , v⟩ − 2 Re ⟨u, v⟩ ≈
≈ ∥f∥2 + 2∥u∥2 − 2 Re ⟨f , u⟩ = ∥f∥2 = 1,

and
∥u∥2 ≈ 1

4
∥f∥2, ⟨f , u⟩ = ∥u∥2.
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Spectral multiplicity

Simplicity of spectrum

Now let us estimate ∥f − g∥:

∥f − g∥2 = ∥ − u + v∥2 ≈ ∥u∥2 + ∥v∥2 ≈ 1
2
∥f∥2 =

1
2
.

To establish the second statement of the lemma let us take into
accont that we use the same estimates both for f1 and f2. Thus,
we have to analyze the following inequality:

∥f − g∥2 ≥ 1 + a2 − a
√

2.
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Spectral multiplicity

Simplicity of spectrum

Using results of the above calculations we have

∥f − g∥2 ≥ 1 + a2 − a
√

2,
1
2
≥ 2 −

√
2,

√
2 ≥ 3

2
,

and we come to contradiction.
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Spectral multiplicity

Simplicity of spectrum: Random iceberg map

T T

Figure: Iterates of the base level of an iceberg.
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Spectral multiplicity

Simplicity of spectrum: Random iceberg map

Lemma. Suppose that∥∥∥∥µ(TVn,k ,k−1 | Vn,s,s−h)−
1
hn

∥∥∥∥
1
= o

(
1
hn

)
. (2)

Then ⟨u, v⟩ → 0 and ⟨f , v⟩ → 0 as n → ∞.

This lemma immediately implies that T has simple spectrum.
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Spectral multiplicity

Thank you!
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