Курс:Геометрические свойства мер и динамические системы
Материал из TDS
м (переименовал Курс:Геометрические свойтва мер и динамические системы в Курс:Геометрические свойства мер и динамические системы) |
|||
(2 промежуточные версии не показаны) | |||
Строка 6: | Строка 6: | ||
Динамические системы являются источником множества примеров вероятностных распределений (мер) на многообразиях и топологических группах, в том числе мер, обладающих экзотическими геометрическими свойствами. Хорошо известны два механизма возникновения нетривиальных примеров распределений, связанных с динамической системой: это I) инвариантные меры и II) спектральные меры ассоциированного с динамической системой унитарного представления. В нашем курсе мы рассмотрим наиболее простые конструкции обоих типов и особенно внимательно рассмотрим второй механизм. | Динамические системы являются источником множества примеров вероятностных распределений (мер) на многообразиях и топологических группах, в том числе мер, обладающих экзотическими геометрическими свойствами. Хорошо известны два механизма возникновения нетривиальных примеров распределений, связанных с динамической системой: это I) инвариантные меры и II) спектральные меры ассоциированного с динамической системой унитарного представления. В нашем курсе мы рассмотрим наиболее простые конструкции обоих типов и особенно внимательно рассмотрим второй механизм. | ||
- | Курс является вводным к предстоящему курсу профессора университета Руана (Франция) Эль Х. Абдалауи (LMRS) на тему [[Курс:Спектральная теория систем ранга один|Спектральная теория систем ранга один]]. В программу наших миникурсов включено обсуждение открытых вопросов в данной области. | + | Курс является вводным к предстоящему курсу профессора университета Руана (Франция) [http://www.univ-rouen.fr/LMRS/Persopage/Elabdalaoui/ Эль Х. Абдалауи] ([http://www.univ-rouen.fr/LMRS/ LMRS]) на тему [[Курс:Спектральная теория систем ранга один|Спектральная теория систем ранга один]]. |
+ | |||
+ | В программу наших миникурсов включено обсуждение открытых вопросов в данной области. | ||
==ПРОГРАММА КУРСА== | ==ПРОГРАММА КУРСА== |
Текущая версия на 13:28, 28 января 2012
Лектор - к.ф.-м.н. А.А.Приходько
Курс будет читаться параллельно в НМУ МЦНМО, в форме миникурса из 4 лекций, и на мех-мате МГУ им. М.В.Ломоносова в форме полугодового спецкурса (осень 2012)
Аннотация
Динамические системы являются источником множества примеров вероятностных распределений (мер) на многообразиях и топологических группах, в том числе мер, обладающих экзотическими геометрическими свойствами. Хорошо известны два механизма возникновения нетривиальных примеров распределений, связанных с динамической системой: это I) инвариантные меры и II) спектральные меры ассоциированного с динамической системой унитарного представления. В нашем курсе мы рассмотрим наиболее простые конструкции обоих типов и особенно внимательно рассмотрим второй механизм.
Курс является вводным к предстоящему курсу профессора университета Руана (Франция) Эль Х. Абдалауи (LMRS) на тему Спектральная теория систем ранга один.
В программу наших миникурсов включено обсуждение открытых вопросов в данной области.
ПРОГРАММА КУРСА
- Спектральные инварианты динамических систем - вводная лекция, в которой будет дан краткий обзор основных конструкций и теорем спектральной теории действий групп с инвариантной мерой, необходимых для понимая материала курсов: Меры на прямой R и в пространстве Rn. Борелевские меры на топологических группах и их преобразования Фурье. Сингулярность и абсолютная непрерывность. Унитарное представление, связанное с динамической системой. Гауссовские динамические системы.
- Задачи классического анализа, связанные с исследованием свойств борелевских мер. Теорема Римана-Лебега. Конструкции сингулярных мер. Произведения Рисса. Меры Меньшова-Райхмана. Функция и распределение Минковского. Проблема Салема. Иллюстрации к вопросу о взаимосвязи статистических свойств динамических систем и свойств спектральных мер. Динамические системы с дискретным спектром. Действия со свойством быстрого убыванием корреляций.
- Меры, энтропия и размерность. Инвариантные меры динамических систем. Фракталы. Хаусдорфова размерность множеств и мер. Топологическая и метрическая энтропия. Мультипликативная эргодическая теорема Оселедца.
- Символические динамические системы. Аппроксимационный ранг. Системы конечного ранга (энтропия, сложность, статистические свойства). Подходы к вычислению спектральных мер систем конечного ранга и приложения к задачам анализа. Меры Салема: результаты и открытые вопросы.
О расписании курса будет сообщено дополнительно