Спецкурс Методы визуализации:Задачи
Материал из TDS
Строка 16: | Строка 16: | ||
Задача: построить модель классического (двумерного) фрактала Рози, показывающую трансформацию фрактала под действием преобразований. | Задача: построить модель классического (двумерного) фрактала Рози, показывающую трансформацию фрактала под действием преобразований. | ||
+ | |||
+ | ===Множества Мандельброта и Жюлиа=== | ||
+ | |||
+ | <gallery> | ||
+ | Image: Mandelbr1.jpg | ||
+ | Image: Mandelbr1.jpg | ||
+ | Image: Mandelbr2.jpg | ||
+ | </gallery> | ||
+ | |||
+ | Задача: визуализировать процесс бесконечного приближения к некоторой точке границы множества Мандельброта на плоскости параметров, рисуя параллельно множество Жюлиа. | ||
===Тайлинги Пенроуза=== | ===Тайлинги Пенроуза=== |
Версия 13:38, 17 октября 2012
ЗАДАЧИ СТАНДАРТНОЙ СЛОЖНОСТИ
Динамика сумм Вейля
Задача: исследовать поведение экспоненциальных сумм с полиномиальной частотной функцией в зависимости от числа слагаемых.
Литература
Фрактал Рози
Задача: построить модель классического (двумерного) фрактала Рози, показывающую трансформацию фрактала под действием преобразований.
Множества Мандельброта и Жюлиа
Mandelbr1.jpg
|
Mandelbr1.jpg
|
Mandelbr2.jpg
|
Задача: визуализировать процесс бесконечного приближения к некоторой точке границы множества Мандельброта на плоскости параметров, рисуя параллельно множество Жюлиа.
Тайлинги Пенроуза
Задача: изобразить тайлинги Пенроуза с дополнительными условиями раскраски фигур
Тайлинги с определенными условиями на сочетания фигур
Задача:
- визуализировать замощения плоскости квадратами с заданными граничными условиями сочетания фигур
- исследовать сложность (энтропию) полученной динамической системы
Литература
Группа Lamplighter
Задача:
- построить интерактивную модель "путешествия" по графу Кэли группы L2 (группа мигающих лампочек, lamplighter group), представленному в форме орициклического произведения деревьев
- нарисовать собственные функции оператора случайного блуждания
Предельные полиномы автоморфизма Чакона и голоморфная динамика
Задача: построить динамическую модель эволюции производящей функции семейства предельных полиномов в зависимости от параметра.
Геометрические свойства марковских полей и клеточных автоматов
Задача: изобразить динамическую систему Ледрапье на плоскости Z2 и исследовать полученное марковское поле
Клеточный автомат Life на торе
Задача: визуализировать автомат "Life" Дж. Конвея на дискретном торе Z2/(p,q)Z2, где p и q - пара натуральных чисел. Исследовать динамику данного клеточного автомата в зависимости от параметров p и q.
Изгибаемые многогранники
Задача: визуализировать пример изгибаемого (нежёсткого) многогранника (допускающего движение граней на стыке при сохранении геометрии граней).
БОЛЕЕ СЛОЖНЫЕ ЗАДАЧИ
Визуализация трёхмерного фрактала Рози
(***)