ФИВТ:Динамические системы

Материал из TDS

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
==Программа==
==Программа==
 +
1. Действие группы (полугруппы) как универсальная модель динамической системы. Примеры инвариантных структур на фазовом пространстве: топологические динамические системы, действия с инвариантной и квази-инвариантной мерой.
 +
 +
2. Кодирование динамических систем. Символическая динамика. Примеры символических систем: схема Бернулли, процесс Маркова, подстановочные системы. Топология на пространстве последовательностей. Свойства преобразования сдвига.
 +
 +
3. Марковское кодирование гиперболического автоморфизма Аносова на двумерном торе.
 +
 +
4. Динамические системы с инвариантной мерой и индуцированные ими случайные процессы. Конструкция системы, порождённой бесконечным словом: инвариантный компакт и стандартная инвариантная мера. Теорема Боголюбова--Крылова о существовании инвариантной меры гомеоморфизма компакта.
 +
 +
5. Эргодические теоремы Фон Неймана и Биркгофа--Хинчина. Лемма Рохлина--Халмоша. Эргодические меры как крайние точки множества инвариантных мер.
 +
 +
6. Спектральная теорема. Унитарное представление Купмана. Циклические пространства и спектральные меры. Спектральные инварианты. Примеры спектрального исследования: схема Бернулли, автоморфизм Аносова, поворот окружности, одометр.
 +
 +
7. Джойнинги. Теорема о классификации автоморфизмов с чисто точечным спектром.
 +
 +
8. Статистические свойства: перемешивание, слабое перемешивание, и их спектральная интерпретация. Простота спектра автоморфизмов ранга 1. Примеры динамических систем с сингулярным спектром. Теорема Винера.
 +
 +
9. Понятие об энтропии динамической системы. Энтропия и информация. Теорема Шеннона--Макмиллана--Бреймана. Разбиение Пинскера. K-системы.
 +
 +
10. Дизъюнктность динамических систем. Факторы и расширения.
 +
 +
11. Символическая сложность. Оценка сложности апериодических последовательностей. Примеры вычисления сложности системы: поворот окружности, система ранга 1, схема Бернулли.
 +
 +
12. Динамические системы, связанные с дифференциальными уравнениями. Системы классической и квантовой механики. От потока к диффеоморфизму и обратно: отображение Пуанкаре и надстройка. Автоморфизмы перекладывания отрезков.
 +
 +
13. Предельное поведение траекторий. Теорема Пуанкаре--Бендиксона.
 +
 +
14. Гиперболические системы. Устойчивое и неустойчивое многообразия. Подкова Смейла. Аттракторы. Мультипликативная эргодическая теорема.
 +
 +
* [[ФИВТ:ДС:Программа|(Программа на отдельной странице)]]
==Задачи к экзамену==
==Задачи к экзамену==
-
* [[ФИВТ:ДС:Программа|Программа]]
 
* [[ФИВТ:ДС:Упражнения|Упражнения]]
* [[ФИВТ:ДС:Упражнения|Упражнения]]
* [[ФИВТ:ДС:Лабораторные работы|Лабораторные работы]]
* [[ФИВТ:ДС:Лабораторные работы|Лабораторные работы]]

Версия 12:19, 21 ноября 2012

Программа

1. Действие группы (полугруппы) как универсальная модель динамической системы. Примеры инвариантных структур на фазовом пространстве: топологические динамические системы, действия с инвариантной и квази-инвариантной мерой.

2. Кодирование динамических систем. Символическая динамика. Примеры символических систем: схема Бернулли, процесс Маркова, подстановочные системы. Топология на пространстве последовательностей. Свойства преобразования сдвига.

3. Марковское кодирование гиперболического автоморфизма Аносова на двумерном торе.

4. Динамические системы с инвариантной мерой и индуцированные ими случайные процессы. Конструкция системы, порождённой бесконечным словом: инвариантный компакт и стандартная инвариантная мера. Теорема Боголюбова--Крылова о существовании инвариантной меры гомеоморфизма компакта.

5. Эргодические теоремы Фон Неймана и Биркгофа--Хинчина. Лемма Рохлина--Халмоша. Эргодические меры как крайние точки множества инвариантных мер.

6. Спектральная теорема. Унитарное представление Купмана. Циклические пространства и спектральные меры. Спектральные инварианты. Примеры спектрального исследования: схема Бернулли, автоморфизм Аносова, поворот окружности, одометр.

7. Джойнинги. Теорема о классификации автоморфизмов с чисто точечным спектром.

8. Статистические свойства: перемешивание, слабое перемешивание, и их спектральная интерпретация. Простота спектра автоморфизмов ранга 1. Примеры динамических систем с сингулярным спектром. Теорема Винера.

9. Понятие об энтропии динамической системы. Энтропия и информация. Теорема Шеннона--Макмиллана--Бреймана. Разбиение Пинскера. K-системы.

10. Дизъюнктность динамических систем. Факторы и расширения.

11. Символическая сложность. Оценка сложности апериодических последовательностей. Примеры вычисления сложности системы: поворот окружности, система ранга 1, схема Бернулли.

12. Динамические системы, связанные с дифференциальными уравнениями. Системы классической и квантовой механики. От потока к диффеоморфизму и обратно: отображение Пуанкаре и надстройка. Автоморфизмы перекладывания отрезков.

13. Предельное поведение траекторий. Теорема Пуанкаре--Бендиксона.

14. Гиперболические системы. Устойчивое и неустойчивое многообразия. Подкова Смейла. Аттракторы. Мультипликативная эргодическая теорема.

Задачи к экзамену

Личные инструменты